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The current source-function technique solution of electromagnetic scattering from a half plane
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Integral equations for electromagnetic scattering problems have usually been based on procedures
attributed to Pocklington or Hallén. Integral equations for the unknown induced sources are obtained
after utilizing the vector and scalar potentials as an intermediary to relate the fields and currents.
This paper utilizes an alternative field-source relationship to obtain an integral equation which
retains the integral operator with the simple kernel of Hallén’s equation as well as the simple
forcing function of Pocklington’s equation. Further benefits of this formulation are yet to be
determined. The unknown function in the integral equation is called the current source-function
since it is the forcing function in an inhomogeneous differential equation for the current induced
on the scatterer. The purpose of the work presented here is to develop further this new technique
by applying it to a classical problem. Hence, the solution for the current induced on a perfectly
conducting half-plane by a plane-wave H-polarized incident field is developed.

1. INTRODUCTION

Current source-function (CSF) technique is the
name applied here to a formulation for electro-
magnetic scattering problems which does not require
the use of the conventionally used vector and scalar
potentials. It is based on a direct relationship
between the electric field E and the current density
J. For harmonic time dependence e ~**,

ine (V*E+ K’E)=V V. .J+k¥*J=U ¢y

where o is the radian frequency, kis the (free-space)
wave number, and € is the permittivity of the
medium. Since U = V V « J + k?J appears as
adriving function in this inhomogeneous differential
equation for the current, it is called the vector
current source-function. If Uis known, then E can
be found from

ine E=Ux® ¥4)]

where @ is a solution of (V2 + k*)® = 8(r). The
* represents convolution and 8(r) is the Dirac delta
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function. This paper develops the procedures re-
quired to use the CSF method by applying the
technique to the problem of scattering of an electro-
magnetic wave from a conducting half plane.

2. THE HALF-PLANE PROBLEM

The half-plane problem in electromagnetic theory
was first solved by Sommerfeld [1896]. Either an
E-polarized plane wave (E vector parallel to the
edge as in Figure 1) or an H-polarized plane wave
(H vector parallel to the edge as in Figure 2) is
incident upon a perfectly conducting half plane
extending from zero to infinity along the positive
z axis in the x = 0 plane. It is desired to find
either the fields surrounding the conductor or the
current on it. The problem can be attacked from
the differential equation viewpoint, starting with
the wave equation and either a Dirichlet boundary
condition (E polarization) or a Neumann boundary
condition (H polarization). Lord Rayleigh [1897]
and, much later, Bouwkamp [1946] observed that
the solution to the wave equation with a particular
boundary condition (either the Neumann or the
Dirichlet) is not unique. Therefore, the half-plane
problem subject to the conditions stated above alone
has an infinite number of solutions. Application
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Fig. 1. E-polarized plane wave.

of a further condition, the edge condition, gives
a unique result.

Over the last 10 years, the solution of electro-
magnetic scattering and radiation problems using
integral equations has become routine. Most of this
work has proceeded from equations of Hallén or
Pocklington type, which have been studied exten-
sively. The Pockington formulation requires that
an integro-differential equation be solved. For the
H-polarization half-plane problem, for example,
this takes the form of a second-order differential
operator applied to the convolution integral of the
unknown current and a Hankel function kernel
HY (k|z|) where HP(t) = Jo(t) + iY,(t). The
right-hand side is proportional to the tangential
incident field evaluated at x = 0,Ef = sinf e ~%=°%s®
(see Figure 2). The integro-differential equation is

d? =
( 2t kz) J’ I,(Z'YHY (k|z — 2’ dz’
dz o

=(@4k/Z,)sin@e tkecos®  7>0 3

Here, k = o/c where o is the radian frequency,
c is the speed of light, and Z, is the intrinsic
impedance of the (free-space) medium. A second
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- Fig 2. H-polarized plane wave.

formulation, the Hallén formulation, involves re-
moving the differential operator in (3) by Green’s
function techniques. This usually results in a right-
hand side involving an integral of the incident field.
A third possibility, which has not received a great
deal of attention, was previously suggested by one
of the authors [ Mayes, 1972]. This integral equation
formulation utilizes (1) and (2) to relate the E field
and the unknown current density I,,. The details
of this derivation are presented in appendix A. The
integral equation can also be found from (3) by
taking the differential operator under the integral
sign and placing it on the unknown current density
I4(z"). The integral equation formulation is

f u (z'YHP (k|z - z' hdz’
0

= (4k/Zo) sin @ e ~tkzcos® 75 )
where
u,(z')y=d2I,/dz'? + k*I,, o

Note that (4) is an integral equation with the same
kernel as (3), but without the differential operator
on the outside of the integral. The right-hand side
of (4) is proportional to the incident field rather
than to an integral of the incident field as is the
case in the Hallén formulation. The unknown quan-
tity in (4), however, is not the induced current,
but rather an auxiliary function, called the current
source-function, from which the current can be
obtained by solving the inhomogeneous differential
equation of (5). Related work has been done by
W. A. Johnson and D. G. Dudley (personal commu-
nication, 1977) and Walish [1976].

It might appear that the solution to (4) is unique,
but why would the wave equation approach give
an infinite number of solutions, and the integral
equation approach only one? The answer has to-
do with the tacit assumption that the solution (the
unknown u ) to an integral equation is integrable
in some sense. Differentiating the current I, ac-
cording to (5) may mean that u ,,(z) is not integrable
in the usual sense. This would also cast doubt on
the validity of taking the derivative operator under
the integral sign.

3. DIVERGENT INTEGRALS AND THE FINITE PART
Bouwkamp [1954, pp. 40, 68-69] points out that

" if the d2 /dz? operator of (3), for example, is taken
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under the integral sign and placed on the kernel,
then the resulting kernel is nonintegrable. Such an
integral can be assigned a meaning, however, by
introducing the concept of the finite part. This
concept dates back to Cauchy [1826] who used
it to assign a meaning to the gamma function for
negative values of the argument. Hadamard [1923]
extends the concept to the multidimensional case.
A lengthy bibliography and a general discussion
of the history of the finite part of divergent integrals
is given by Bureau [1955, pp. 143-146]. Both
Hadamard and Bureau use the finite-part concept
in connection with solving partial differential equa-
tions.

Hadamard [1923, pp. 134-141] introduces the
theory of the finite part of divergent integrals and
discusses several examples at length. Two examples
of finite-part integration which are relevant to the
present work are given here. As a first example,
consider the integral

bodt 2 b .
L=t (b1 |, ©

The right-hand side goes to infinity when it is
evaluated at the upper limit. The finite part of this
expression is found by retaining only the value
obtained when the right-hand side is evaluated at
the lower limit. Hence,

F f” de -2 .
p . (b— t)3/2 - (b— a)1/2 ( )

where the letters Fp indicate the finite part.
By following a similar procedure, using the as-
sumption that I, ~ z'/2~", 0=+ < 1/2,as 20,

and the identity .-

@/ HP (|z—t)) = —@/a)HP (|2 — t]) ®

and integrating by parts, it can be shown that the
derivative operator of (3) may be taken under the
integral sign as long as the finite part is taken of
the resulting integral. That is,

daz [=
= j I,() HY (k|z — t|dt
g 0

oc dz
= pro (@ 1,,(:)) HP (klz—~t)hdt, z>0

®
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where

20 dz
pr (5; I,,(t)) HY (k|z - t|)dt
(V]

([ (e

e—0

+ [(d/de) I, (1))

HE (k |z|)} (10)
The last term must be included because dI,, /d¢
is assumed to have £7'/2~7 edge behavior with
O0=s1<1/2.

In this way, the integral equation (3) may be
written in the form

pr uy(z'y HY (kjz — 2’ hdz’

0
z>0 (11)

where u, is given by (5). This integral equation
may be shown to have an infinite number of
solutions, yhich Lord Rayleigh and Bouwkamp also
found to be the case in the wave equation approach
to the problem. Thus, the use of the finite part
integral equation correlates better with the wave
equation approach than does the use of the ordinary
integral equation. A derivation of (11) starting with
(1) and (2) is given in appendix A. A wave equation
approach to the current source-function technique
solution of the half-plane problem is given by
Hanson [1976].

The result of (9) is more easily proven when
the convolution equations of Schwartz distribution
theory are used instead, because then it is easily
shown that

= (4k /Z,) sin § e ~ikecose,

(d?/dz?)(I« K) = (d*I/dz?) K = I+ (d*K /dz?)
(12)

where I and K are appropriate distributions and
the * represents convolution. Schwartz distribution
theory is based on finite part integration for some
definitions. The Schwartz distribution theory inter-
pretation of the problem is discussed in detail by
Hanson [1976].

4. SOLUTION OF THE INTEGRAL EQUATION FOR
1 (2)

In this section, the finite-part integral equation
(11)is solved for u,, . Methods for solving finite-part
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integral equations have been studied by several
authors. Butzer [1959] and Boehme [1963] use
operational calculus to study the finite part of
divergent convolution integrals. They both treat
finite-part singular integral equations of Volterra
type. Wiener [1962] treats linear finite-part integral
equations of Fredholm second kind and Volterra
types. In a series of over thirty papers published
over the last fifteen years (generally published in
Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg,
Mathematische Nachr., or Beitr. Anal.), he and
his colleagues treat many finite-part integral equa-
tions. However, it appears that Fredholm finite-part
integral equations of the first kind with Hankel
function kernels, such as (11), have not yet been
treated explicitly. Work on a similar integral equa-
tion except with a K (t) kernel has been reported
by Belward [1972], however. For the finite-part
equation (11), one or more solutions of the homoge-
neous equation

ij w(z'YHP (klz —z')dz" =0, z2>0 13)
)

may be added to the solution of the ordinary integral
equation (equation (11), but without the Fp prefix)
to obtain another solution. The number of solutions
that may be added is related to the edge condition
on the current source-function. This simply states

that the maximum allowed edge singularity is z~3/2,
that is,
u,(z)=0(z327?), z-0* 14)

This is obtained from the edge condition on the

H-polarization current, which is [ Mittra and Lee,

1971, pp. 4-11]:

I,(z2)=0@'?), z—-0 15)

The homogeneous integral equation (13) can be
solved by several methods. One technique follows
and another, the Wiener-Hopf technique, is detailed
by Hanson [1976].

Both the integral equation for the E-polarization
half-plane current I.(z) and the integral equation
for the ordinary part of the H -polarization current
source-function u,(z) may be written as

= 4k
Iv(z’)H‘O‘)(klz—z’l)dz’=—Z—e""‘”°s°, z>0.
(1]

o

(16)

Note that the right-hand side is the same as in
(11) except for a sin® factor. The exact solution
of this equation is [ Noble, 1958, p. 228]:

4k?e ™/% (isin@/2) e
v(z) =1,(z)
Z,Vw V2 V kz
[kz(14cos0)) 1/2
+ sinee“"”“"j e"'zdt} an

1]

where 1_(z) is the unit step function. This is seen
to have z /2 edge behavior. Since the edge con-
dition for the H-polarization current source-func-
tion is u,(z) = O(z2/?) as z — 0, the function
sin 0 v(z) alone does not have to be the total solution
of (11). Solutions of (13) which at most behave
as z -3’2 as z— 0 may be added to sin @ v(z) without
violating any of the conditions of the problem.

To find a solution of (13), consider the integral
equation

« 4k
J fz'Y HY (klz— 7z’ Ddz’ = Z—, z>0 (18)
0

1]

The solution f(z) of this integral equation is given
by v(z) of (17) with 6 = 90°. Applying the operator
L = d/dz to both sides of (18) yields

FPI Lf(z’YHP (k|z—z' )z’ =0, z2>0 19
0

so that a solution of the homogeneous finite part
integral equation of (13) is

dfz)
dz Z,Vw (kz)*/?
Clearly, any derivative of this is also a solution.

of (13). Equation (20) is the only solution which
satisfies the edge condition on u,(z').

k3 ein/d iz

w(z) = 1,@) (20

5. THE CONSISTENCY CONDITION

The complete or total solution of the finite part
integral equation of (11) for u,(z) becomes

U, (z) = sin 0 v(z) + A w(z) (21

where A is (at this point) an arbitrary constant and
v(z) is given by (17).
In appendix B it is shown that the system

421, /dz2 + kI, = u,(z), 0<z<w (22)



with I,(0) = 0 and I, satisfying an appropriate
condition as z — +, has no solution unless the
consistency condition

Fp J’ u,(z)e*dz=0 (23
[}

is satisfied. Substituting (21) in (23), one obtains

0= ] u,(z) e*dz
0

=sin9 ] v(z) eedz + Af w(z) e **dz (24
V] 0
where the integrals are to be finite part integrals
when necessary. The solution for A becomes

A=— [sinef v(z)e"‘zdz]/f w(z) e*2dz 25)
0 0

Therefore, there is only one value of A for which
a solution for I, exists. The integrals of w(z) and
v(z) with respect to e *? become

i 2ik
j v(z)eMdz=——————, 0 #2nw (26)
o Z,sin(0/2)
and
- VIR
Fp w(z) e*tdz= ——— 7
0 0

Substituting these in (25) and simplifying yields
A=[V'2 cos®/2)]/ik (28)

The unique solution for u ,(z) becomes

V2 cos (98/2)
—_—w

U, (z) =sind v(z) +
H ik

(2) (29)
This is the required complete solution for u,(z).
The current I, is found in the next section.

6. CURRENT IN TERMS OF THE CURRENT
SOURCE-FUNCTION

The expression for u,, the H-polarization cur-
rent source-function, is given by (29). The relation
between uy and I, is given by (22). I,; may be
found in terms of u,; by using Green’s function
techniques. This result is
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I,(2) =f u,(z') gz,2')dz’ 30)
0

where finite-part integration is assumed (if neces-
sary) and g(z,z") is a Green’s function for the
operator . = (d? /dz? + k?). This Green’s function
may be found by solving the distributional inhomo-
geneous second-order differential equation

FL*g=8(z—2'), 0<z,72 <o,

goutgoing as 7' —> o (€3))
subject to the adjoint boundary conditions where
L*¥(= &) is the adjoint of .#. Only a radiation
type adjoint boundary condition is required at
infinity. It is shown in appendix B that no particular
adjoint boundary condition is required at 7’ = 0.

If the condition g(z,z” = 0) = 0 is imposed on
g, then one obtains

8(z,2) = (1/2ik)(e™= 1 — ei=+D)) ‘ (32

The current I,; is found from (30). It is interesting
to note that since

J’ uHeikz'dZ' = 0
[\]

by the consistency condition of (23), then the current
may also be written as

Iz = f uy (z') E(z—z')dz’ (33)
o

where E(z) = (1/2ik)e™, This is a ‘‘fundamental
solution’’ for the operator .# as is used in the theory
of distributions. The current I, is the convolution
of u, with E. Thus, the integral in (30) has been
reduced to the convolution integral in (33).
Substituting (29) for u,, in (33), one obtains

I,(2) Sinefm (z) e™==ld
=—] v(Z)eM=?ldr
H 2ik J

N V2 cos 0/2)

Fp | wz')e=2ldy (4
Qi) I . M) )
The integrals in this expression are found to be

4ke /4
Z,VTw

f v(z) eMFdy =
0
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. (e-ikz [Fy(®) — 1, (2) F,(2kz)] . 2

sin(6/2) . sin6
-1, (z)e ~#=° F [kz(1 + cos 0)]) 35)
and
J‘m | | 4k2e—in/4
F ! iklz—z' d T
|4 . w(Z) e b4 Z, v
- V2 e7® [Fy(«) — 1,(2) F,(2k2)] (36)
where
VX
F,(x) = e*dt (37

[1]
and F,(®) = V7 e"™/*/2. Substituting (35) and
(36) into (34) and simplifying gives
1,(z) = [4e=** (Z, V)1, (2)

[kz(1+cos0)]1/2
R e—ikz cosOJ- e“zdt, (A/m)/(V/m)

0

(38)
From (33), it is important to note that

—ikz

L9 =

u ()e*dz =0, z<O0 (39
2ik f 0 w(?)
The integral is identically zero for all negative z.

This is true because of the consistency condition
of (23). Thus,

I(9 = j U (2) B(z — 2)d7’, —o<z<o (40)

0

_ The current is given by the integral for all values

of z.

7. CONCLUSIONS

The main purpose of this paper has been to
develop the procedures for applying the current
source-function technique to electromagnetic scat-
tering from a perfectly conducting half plane. The
solution to the integral equation (11) is found by
adding the solution of the ordinary integral equation
to a solution of the homogeneous finite-part integral
equation such that the edge condition is not violated.

A constant multiplying the homogeneous solution

is found by enforcing the consistency condition (23)
which is developed in appendix B. The current is
found by inverting the d?/dz®> + k? operator to
obtain

Iy=uy*E, allz

The fundamental solution E may be used instead
of a Green’s function because of the consistency
condition. The result for I,, given by (38), is
identical with the result obtained by other methods.

Not only has the exact solution been obtained
using the CSF technique as shown here, but also
the same procedure applied numerically has yielded
data closely in agreement with the above results
[Hanson, 1976].

The success of the CSF technique application
to the half-plane problem is a positive indication
of its feasibility for arbitrary perfectly electrically
conducting (p.e.c.) objects (even those with sharp
edges). The values of any divergent integrals which
are introduced by sharp edges could apparently be
defined by using Hadamard’s finite part. The CSF
technique appears to be more straightforward for
p.e.c. objects with suitably well-behaved current
distributions. The general nature of the CSF tech-
nique is indicated by Hanson [1976, pp. 162-165],
wherein a brief outline of the current source-func-
tion technique for three-dimensional time domain
problems is given. Thus, there are many possibilities
for application of the CSF technique which remain
to be explored.

APPENDIX A: DERIVATION OF (11)

The integral equation (11) can also be derived
directly from Maxwell’s equations. It is the purpose
of this appendix to show how this can be done
for the harmonic problem with e ~** time depen-
dence where w is the radian frequency. Assuming
that any conducting inhomogeneities in a region
have been replaced with the induced electric current
density J acting in a homogeneous medium with
constitutive parameters € and p., Maxwell’s equa-
tions for the electric and magnetic fields E and
H produced by these currents may be used to show
that

1 ’ '
V2E+Kk?E=——{VV . J+k¥}=-(1/y)U 41
y .

where U is the vector current source-function,

_—y
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y = —iwe, and k* = w?ne. Collin [1960, p. 21,
eq. (51b)] gives this relation between E and J.
Therefore, this direct relationship is not new, but
its application to integral equations apparently is.
Solving for the electric field E due to the current
density J yields

I

(42)

where R = |r — r’| is the source-point to observa-

tion-point distance.

The following discussion is limited to the half-
plane problem. A more general discussion can be
found in Hanson [1976]. For the H polarization,
the current flows in the zdirection only. The current
Jy can be expressed as

a=14(01,(2dx) 2 (43)

where 1, (z) is the unit step function and 3 is the
Dirac delta function. I,,(z) is the unknown current
distribution. The vector current source-function for
this case becomes

Uy =VV e Jy + k20, = [3I41,)/82] [83(x) /ax] %

+8(x)(d2/dz? + k)(I41,) £ (44)

For a proper interpretation, these derivatives must.
be performed using Schwartz distribution theory.
Substituting (44) in (42) yields the expression for
the H-polarization scattered electric field. After
using the fact that ,

= gik(x2+ a2+ 2)1/2
- = i M 2. ,21/2
.[ x2+ 72+ )2 dn = EH kT 9T

- (45)

where H{" is the Hankel function, the expression
becomes

J J' a ) aS(x)
_ —x— -
- HP{k[(x - x')? + (2 - 2)?]/?}dx’' d7

Z 20
-1 ﬁf U (VHY (k[x2 + (z — )2V} dz’
o

where
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u,(z') =d?I1,/dz'? + kI, 47

The total field E*is equal to the sum of the incident
and scattered fields or

E'=E'+E - (48)

The integral equation for u,(z') is obtained by
applying the boundary condition that the tangential
electric field must be zero on the half plane. The
integral equation becomes

= i 4k
ij uy(ZYHP (klz~ 2'1)d2’ = — Ei(x= 0, 2)
. 0 ZO .
= (4k /Z;) sinf e ~*ze0® 7> 0 “9)

where 0 is the angle of incidence defined in Figure
2 and E is the z component of the incident field.
This is just (11) of the text.

APPENDIX B: DERIVATION OF THE CONSISTENCY
CONDITION

The consistency condition is required to deter-
mine the unknown constant A in (21). It is obtained
by examining the conditions under which the in-
homogeneous differential equation (5) relating the
current source-function u,, and the current I, has
a solution. The inverse of the operator .% = (d2 /dz?
+ k?)in(5) canberepresented asan integral operator
with a Green’s function kernel. This Green’s func-
tion g(z,z') is a solution of the distributional in-
homogeneous differential equation

Frg=8(z—-7) (50)

subject to certain boundary conditions where
ZL* (= .2) is the adjoint of .Z.

These adjoint boundary conditions are found by
determining boundary conditions such that

() = (n,, L) 61))

where (a, B) is shorthand for [*_ aB dz. Here,
v takes the place of I, (thatis, n = I,), and ¢
is the function for which the adjoint boundary
conditions are to be found. The + subscript denotes
that m is zero for z < 0. Since the current I,(0)
=0and Iy = O(z'/?» as z = 0, then m (0) =
Oandn = O(z'/?»as z— 0. Clearly, .#7 , is allowed
to be a pseudofunction (a function which requires

that finite-part integration be performed on it)
because
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Fq=0(z"%? as z—->0* (52)

For arbitrary §, this means that (¥n,, ¥) must,
in general, be interpreted as the finite-part integral

o dz"l
ij ( + kz'q) ¥ (2)dz (33)
o \dz?

Setting the lower limit to € and integrating by parts
yields

< dz‘l'l d"l ©
k2 dz=—
[ (G oo Groo)

€ €

w « dzlli
+ J n(z)( + k2¢) dz (54)
€ dzz

€

dis
- n(z) py

Bécause of the allowed edge behavior of m(=1,),
dn/dz=0(z""?) asz—> 0" (55)

Now, by assuming that dn/dz actually has edge
bebavior z7'/2*7, 0 < 7 < 1/2, as z — 0, the finite-
part integral can be written

Fp J (Z)¥(2)dz

0

« d"l
= lim {I (Zn)b(dz + d—t!f(z) l }
€ Z €

0

©

=(dn /DY) | — n(2)Ay /d2)

«

0
+ j (2L *ydz (56)
o

In order for (51) to hold, the boundary terms
above must vanish. The boundary conditions to
be satisfied are

n)dy /dz—0 as z— 0 . &7}

. (dn /dD)Y(@) >0 as z—> (58)
n(db/dz—> 0 as z—> = 59)

The first condition is always satisfied because m(0)
= (. The asympotic behavior of the current is

m=I,~e™o® 35 750 - (60)

Since a plane wave incident field requires that a
source be located at infimity, it is not possible to
specify a radiation-type condition at plus infinity
when the source of the plane wave is located there.

If, however, @ (see Figure 2) is limited to be in
the range 90° < 6 < 270°, the source is located
at negative infinity and an outgoing plane wave
is expected as z — +. Once the problem has
been solved under this 0 limitation, 8 can be extend-
ed to all angles of incidence. This initial limitation
on 0 allows (58) and (59) to be satisfied for a slightly
lossy medium. Thus, a small imaginary part may
be introduced in k such that kK = k, + ik,. This
gives

dn
n, d_ ~ ek22°959 345 7 > o with cos 0 < 0 (7))
z

From (57)-(59), ¥ and di)/dz must exhibit the
exponential form

¥, d/dz~e* as 7o (62)

- with { > k,cos8 in order for the boundary terms

to vanish. It turns out that { = k, so that this
condition is always satisfied. This is the only adjoint
boundary condition that is required. A condition
at zero is not required for the adjoint problem since
finite-part integration removes zero from consider-
ation. Once the solution for a lossy medium has
been found, that for a lossless medium can be
obtained by setting k, = 0.

The solvability of the second-order differential
equation (d?/dz? + k®»y = f(2), a < z < b, such
that certain boundary conditions are satisfied is
closely related to the existence of solutions to the
homogeneous system and to the adjoint homogene-
ous system. In the case of a scatterer of finite
extent, solutions of the homogeneous system arise
only at resonance, i.e., when the physical extent
of the scatterer matches a multiple of a half wave-
length of the incident field. For the semi-infinite
case under consideration here, the homogeneous
system has no nontrivial solutions. For nonsingular
differential equations, it may be shown that if the
homogeneous system has only the trivial (zero)
solution, then the adjoint homogeneous system has
only the trivial (zero) solution. For the details, the
reader is referred to Stakgold [1967, Vol. I, pp.
84-85]. For problems with functions requiring fi-
nite-part integration, this is (in general) no longer
true. The adjoint homogeneous system usually has
solutions even though the homogeneous system has
only the trivial solution. ‘

For the half-plane problem, the homogeneous,
inhomogeneous, and adjoint homogeneous systems



are
homogeneous system:
Lp=0, 0<z<o, p(0)=0;

p— 0 exponentially as z— (63)

inhomogeneous system:

Ln=f 0<z<w, 70)=0;

1n — 0 exponentially as z— 64

adjoint homogeneous system:
L =0, 0<z<oo;
y — 0 exponentially as z— o (65)

where #* = ¥ = (d?/dz® + k?). As was shown
previously, the adjoint homogeneous system does
not have a boundary condition to be satisfied at
z = 0. The differential equation of (63) has solutions
{e iz e+ikz} or {sin(kz), cos(kz)}, but none of these
satisfies both of the boundary conditions so (63)
has only the trivial solution p = 0. The adjoint
homogeneous differential equation also has the
above solutions, but in this case one of them does
satisfy the given boundary condition (again assum-
ing that k = k, + ik,, 0 < k, < 1, and that 6
is restricted). The nonzero solution of the adjoint
homogeneous system (65) is

ll" =e +ikz (66)

The following theorem is similar to one given by
Stakgold [1967, Vol. 1, p. 85].

THEOREM: System (64) has no solution unless
the consistency condition

J‘ QU (dz=0
Q

is satisfied for every y(z) which is a solution of
(65).

PROOF:Zis a second-order differential operator
and hence can have no more than two nonzero

- linearly independent homogeneous solutions. Only

one of these is an outgoing wave and goes to zero
as z — o, These are the only conditions required
on ¥ by (65). Multiplying (64) by ¢ and (65) by
7, subtracting, and integrating from 0 to « gives
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f WL — nF*P)dz = f f(D(2)dz (67)
0 0

The left-hand side is zero by Applying the results
of (57)-(59) to (56). Therefore,

j f(QY(2)dz =0 (68)
0

must hold for every  that satisfies (65). Note that
for the trivial solution ((z) = 0, this consistency
condition is always satisfied. Since ¢ = e**is the
only such {5, (5) has no solution unless the consis-
tency condition

pr u () e*dz=0 (69)
0

is satisfied.
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