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ABSTRACT 

The current source-function (CSF) technique is a formulation for 

electromagnetic scattering problems which does not require the use of 

vector or scalar potentials. For perfect (electric) conducting scatterers, 

it yields a Fredholm integral equation of the first kind with a forcing 

function which is simply proportional to the incident field. Once the 

solution to the integral equation has been determined, the current or 

field is found by Green's function techniques. This contrasts with the 

standard formulations which require that either an integro-differential 

equation be solved (the Pocklington formulation) or an integral of the 

incident field be performed (the Hallen formulation). 

The CSF technique for perfect electric conducting scatterers is 

based on a direct relationship between the electric field .E and the 

electric current density Ĵ . For harmonic time dependence e 1U)t> this dir-

ect relationship is 

V2E + k2E = (VV-J + k2J} = "T— U — — iu>e — — iu)£ — 

where to is the radian frequency, k is the (free-space) wave number, and e 

is the permittivity of the medium. The quantity in the braces is the vec-

tor current source-function U. Since may not be twice-differentiable in 

the ordinary sense, U, and IS are interpreted as Schwartz distributions. 

If IJ is known, then the electric field _E and the current density are 

easily found. 

Two classical problems are examined to demonstrate the validity and 

feasibility of the CSF technique. These are the problems of scattering by 

a conducting half-plane and by a conducting strip of finite width. First, 



the half-plane problem is solved analytically by the CSF technique for 

both E- and H-polarized incident plane waves. For the E-polarization, 

the CSF technique is almost the same as previous formulations. For the 

H-polarization, however, a "finite part" integral equation (which can also 

be interpreted as a convolution equation in distribution theory) must be 

solved. The resulting current source-function must satisfy a consistency 

condition, which is developed, in order that it be uniquely determined. 

Once the current source-function has been found, the current on the half-

plane is found by Green's function techniques. 

The half-plane problem is also solved numerically. In this connec-

tion, computer subroutines for evaluating the following special functions 

are given: 

x x 1 it cose (1) e HQ (t)dt, t 2 H ^ d D - t b d t , H ^ d D - t b d t . 0 
0 0 -x 

In addition, a highly accurate subprogram for evaluating an array of Bessel 

functions of the first kind is given. These computer programs are used in 

calculating the E-polarization half-plane current by the moment method. 

Results for a hybrid expansion (with a z 2 function at the edge) are com-

pared with those for an all-pulse expansion. The H-polarization half-plane 

current is found numerically by the CSF technique by using the moment 

method results for the E-polarization. For both polarizations, the numer-

ical results show excellent agreement with the analytical solutions. 

The procedures developed for the half-plane problems appear to be 

applicable to the strip problem. However, the complete solution of the 

strip problem by the CSF technique is yet to be discovered. An even 
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solution to a homogeneous finite part integral equation with allowed edge 

behavior remains to be determined. Consistency conditions are developed 

which must be satisfied for the problem to have a unique solution. 

The CSF technique for three-dimensional electromagnetics problems 

with time-dependent incident fields is also formulated. Thus, the CSF 

technique is a general one and it appears that almost any problem that can 

be solved using vector and scalar potentials can be solved using the CSF 

technique instead. 

The major contributions of this dissertation are: 

(a) the formulation of the CSF technique for three-dimensional electro-

magnetic scattering problems with time-dependent incident fields by treat-

ing all fields and currents as Schwartz distributions, 

(b) the demonstration of a method for finding solutions of the homo-

geneous finite part integral equation, and 

(c) the development of consistency conditions which are required for 

the uniqueness of the current source-function. 
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1. INTRODUCTION 

In the years since 1965, a great deal of work in electromagnetic 

theory has been based on the moment method for the numerical solution of 

integral equations. For certain classes of problems, the electric field 

integral equation, derived by requiring the tangential component of the 

electric field to vanish on perfectly conducting surfaces, is most advan-

tageous. The cylindrical antenna problem is an example. Previous studies 

of this problem have considered one of two standard representations for 

the electric field integral equation, or some slight modification of one 

of them. If azimuthal variation in the f̂ Leld can be neglected, the inte-

gral equations are 

+ k 
dt 

I(z) K(Iz-tI)dz = iweE (t), t 6 L, ' ' tan (1.1) 

and 

I(z) K(|z-t|)dz = A cos(kt) + B sin(kt) + iwe E^an(z)g(t,z)dz, 
L 
t € L, (1.2) 

where e 1 W t time dependence with radian frequency to is assumed, k is the 

free space wave number, and e is the permittivity of the medium. These 

two equations are due to Pocklington (1897) and Hallen (1938), respectively. 

I(z) is the induced current due to the incident electric field which has 

tangential component . The kernel K(|z-t|) is 
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K(lz-tl) = 1 

8,2 

2tt 
ikv/4a2 sin2(<j>/2) + (z-t)2 

- d<(> (1.3) 
A a 2 sin2 (<f>/2) + (z-t)2 

where <p is the azimuthal angle and a is the cylinder radius. A and B are 

constants. g(t,z) is a Green's function for the one-dimensional harmonic 
2 2 2 

operator (d /dt + k ). Discussions of these integral equations may be 

found in many sources, for example, in Mittra (1973, pp. 9-14). 

In 1972, Mayes (1972) proposed an alternate integral equation formula-

tion for the cylindrical rod scatterer or antenna. This formulation is 

u(z) K(|z-t|)dz = itueE* (t), t £ L (1.4) L an 

where 

2 
+ k2I = u(z). (1.5) 

dz 

Note that the integral equation (1.4) has the same kernel as (1.1) and 

(1.2) and that there are no differential operators involved. The left-hand 

side of (1.4) has the same form as the left-hand side of Hallen's equation 

(1.2) and the right-hand side is identical to the right-hand side of 

Pocklington's equation (1.1). The unknown quantity in (1.4), however, is 

not the induced current, but rather an auxiliary function, called the "cur-

rent source-function," from which the current can be obtained by solving 

the inhomogeneous differential equation (1.5). If a solution for the cur-

rent source-function u(z) is found from the integral equation (1.4), then 

the current is found from (1.5) to be 
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I(z) = u(t) g(t,z)dt, z € L, (1.6) 
L 

2 2 2 

where g(t,z) is a Green's function for the operator (d /dz + k ). 

The current source-function (CSF) technique differs from previous 

procedures in that the vector and scalar potentials are not used. Instead, 

direct relationships between the fields ]£ and H and the electric and mag-

netic current sources, J[ and K, respectively, and their derivatives, are 

introduced. Although these direct relationships are not new, their appli-

cation to integral equations apparently is. Collin (1960, Eq. (51b), p. 21) 

gives such a direct relation between IS and .J. It is 

V2E + k2E = ~~— {VV-J + k2J} = U (1.7) — — iwe — — iwe — 

where 

U = VV-J + k2J. (1.8) 

This U is the vector current source-function. The solution for IS in terms 

of U is 

E = - 1 
4iTia)E 

ikR 
U(r')^— dV' (1.9) 

V 

where R = |r-r'| is the source-point to observation-point distance. Equa-

tion (1.9) may be used to form electric field integral equations for 

antennas and scatterers which are shapes other than finite circular cylin-

ders . 

Since the form of the CSF integral equation, Equation (1.4), is sim-

pler than either that of Pocklington or of Hallen, it has been conjectured 
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that the numerical solution of CSF integral equations should be more effi-

cient. However, the CSF formulation is not without difficulties. The 

current density function Ĵ  may not be twice-differentiable throughout all 

of space. Hence, the current source-function may not exist everywhere. 

This may require that the concept of functions be generalized according to 

the rules of Schwartz distribution theory. Furthermore, differentiation 

of Ĵ  may produce singularities in U of such order that the integral (1.9) 

is divergent. In this case either the theory of distributions or the con-

cept of the finite part of divergent integrals is required. 

The work reported here was undertaken to establish the validity and 

feasibility of the CSF technique. For this purpose, some classical pro-

blems of electromagnetic scattering are attacked using the CSF approach so 

that comparisons can be made. The validation of the CSF formulation for 

scattering by a semi-infinite conducting plane is reported here in detail. 

Chapter 2 surveys previous work on certain aspects of the half-plane pro-

blem and its relation to the CSF technique. Chapter 3 details the analytic 

solution to the half-plane problem using the current source-function 

technique. Chapters 4 and 5 discuss the numerical solution of the half-

plane problem by the CSF technique for the E-polarization and the H-

polarization, respectively. An attempt to extend the CSF technique to the 

strip problem is described in Chapter 6. Chapter 7 presents a discussion 

of the possible extension of the CSF technique to the three-dimensional 

time-dependent case. Conclusions and suggestions for further work are 

given in Chapter 8. 
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2. LITERATURE SURVEY AND BACKGROUND MATERIAL 

The solution for the current induced on a perfectly conducting half-

plane by an incident plane wave was chosen as a first test of the CSF 

technique. A number of mathematical procedures have previously been 

established to provide solutions to this classic problem. Some early 

authors developed results which, accepted as proper at the time, were later 

shown to be improper because they did not satisfy the edge condition. 

After the development of the edge condition, other researchers published 

papers that corrected such results of the early authors. In order to make 

the earlier results obey the edge condition, the later authors sometimes 

found that another function which satisfied the requirements of the pro-

blem had to be subtracted from the original solution. It turns out that 

a similar function must be added to have the current source-function ex-

hibit the correct edge behavior. [For example, see Equation (4.2) of 

Chapter 3.] This additional function is not integrable in the ordinary 

sense, so that the theory of divergent integrals must be used. Integral 

equation and integro-differential equation formulations for the half-plane 

problem are given in Section 2.1. The partial differential equation CSF 

formulation for the half-plane problem is discussed in Section 2.2. The 

findings of the authors who altered early results to make them conform to 

the edge condition are described in Section 2.3. Divergent integrals are 

discussed in Section 2.4. 

2.1 Integral and Integro-differential Equation Formulations 

Consider a perfectly conducting half-plane subjected to an incident 

plane wave of radian frequency w polarized with either the electric or the 
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magnetic field parallel to the edge of the conductor. These will be re-

ferred to as the E-polarization and the H-polarization, respectively. 

Figure 2.1 shows the geometry and the coordinate system for each of these 

polarizations. Throughout this chapter, M denotes the metal or perfectly 

conducting sheet defined by x = 0, z > 0 in Figure 2.1. 

The integral equation and integro-differential equation formulations 

for, respectively, the E-polarization and the H-polarization half-plane 

currents are well known. For the E-polarization [see Figure 2.1(a)], the 

integral equation for the current is 

00 

IE(z') H^-Vlz-z'lJdz' = Ey, Z > 0. (1.1) 
0 0 

For the H-polarization [see Figure 2.1(b)], the integro-differential equa-

tion for the current I u is 11 

dz 
IH(z') H^Oclz-z* |)dz» = E*. z > 0. (1.2) 

HQ1^ is the Hankel function of the first kind and order zero and is the 

kernel for the equations. ZQ is the intrinsic impedance of the (free-

space) medium. I„(z') and ITT(z'), respectively, are the unknown E- and E H 
H-polarization currents. E^ and E^ are the tangential incident electric 

fields evaluated at x = 0. For plane wave incident fields, these are 

i = e-ikz cose V o l t s / m e t e r (1.3) 
y 

and 
E1 = sin0 e ± k z C° S 9 Volts/meter (1.4) z 



X 

E 

L 

x 

. 

I H 
(b) 

Figure 2.1. The Geometry of the Half-plane Problem for (a) the E-
polarization, and (b) the H-polarization. 
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Equations (1.1) and (1.2) become 

-»- / i \ u(l),. | i I \ j i 4 -ikz cos0 „ CN I (z1) H„ (k z-z' )dz' = — - e , z > 0 (1.5) 
0 E 0 k z o 

and 

( ^ + k2) IR(z') H^(k|z-z*|)dz' = f - sine e 1 K Z C O S°, 2 > 0 . (1.6) 
dz 

(1) /, | il\j i ^k • Q -ikz cosf 

0 ° 

The integral equations for the CSF formulation for the half-plane 

problem follow from (1.8) and (1.9) of Chapter 1. For the E-polarization, 

the current J„, which has z-variation I (z), flows in the y-direction and & E \ 
is independent of y. This makes V*J = 0 so that the current source-b 

— 2 function, given by (1.8) of Chapter 1, is equal to k J„. If the z-variation fc. 
of the current source-function is denoted by u (z), then 

uE(z) = k2IE(z). (1.7) 

Hence, for the E-polarization, the CSF integral equation is identical in 

form to (1.5) 

0 

, TT(1) /,1 | • | v . f 4k -ikz cos0 „ „, Up,(z ) H^ (k j z-z I)dz = — e , z > 0. (1-8) 
0 

The solution for the current source-function u is trivially different from E 
the solution for I . 

£j 

For the H-polarization, the current J flows normal to the edge of the H 
conducting half-plane and must be zero at the edge. Hence, VV'J ^ 0 so H 
that the current source-function, given by (1.8) of Chapter 1, contains 
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partial derivatives of the current For this polarization, the CSF H 
technique for the half-plane problem is a two-step process. First, the 

integral equation 

, u(l),, | i | v , f 4k . . -ikz cos0 . 11 uH(z') Hq (k|z-z |)dz' = — sm6 e , z > 0, (1.9) 

must be solved for u (z*) and then the inhomogeneous differential equation rl 

d 2 lH . , 2 
dz 
Y- + k IH - uH(z) (1.10) 

must be solved for I (z). The reader is referred to Section 3.2 for the H 
complete discussion. Using the known behavior of the current I„ near the n 
edge, and differentiating twice according to (1.10) yields a current 

source-function uu(z) which is not locally integrable. This requires a n 
special interpretation for the integral in (1.9). The interpretation of 

this integral is treated in Section 2.4. 

Equations (1.5) and (1.6) have been solved by a variety of methods. 

One popular method has been the Wiener-Hopf technique. Copson (1946) was 

apparently the first to use the Wiener-Hopf technique to solve the integral 

equation (1.5). The use of the Wiener-Hopf technique for solving (1.5) and 

(1.6) is given by Noble (1958). Both Noble and Karp (1950, p. 418) comment 

on the non-uniqueness of Wiener-Hopf solutions. In treating the H-

polarization half-plane problem, Karp shows how terms of the form Hi"^ (kr)x 2 

cos(4>/2) and certain of its derivatives arise due to the Wiener-Hopf solu-

tion technique. (r and <{> are the polar coordinates of a point in space.) 
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He indicates that all such terms satisfy all of the conditions of the pro-

blem and that each term has its own singular edge behavior. Karp concludes 

that "for uniqueness it is necessary to specify the behavior of the solu-

tion at the origin also." Thus, an additional condition, the edge condi-

tion, is needed to rule out all terms having the improper singularity at 

the edge. Several such terms must be included, however, in the Wiener-

Hopf solution of the integral equation (1.9) for u . This is given in H 
Chapter 3. The next section shows how such terms arise when the classical 

solution of the half-plane problem is differentiated. Each differentiation 

introduces a higher order singularity at the edge. 

2.2 The Wave Equation and a Magnetic Field Source-Function 

In the last section, an integral equation for the H-polarization half-

plane current source-function u was developed. In this section, the H 
current source-function for the same problem is found using a differential 

equation approach instead of the integral equation approach. To do this, 

a "magnetic field source-function" which satisfies the scalar Helmholtz 

equation subject to the Neumann boundary condition is introduced. Once the 

solution for the magnetic field source-function is found, the current source-

function is derived from the magnetic field source-function in the same way 

that the current is obtained from the magnetic field. 

For the E-polarization half-plane problem, the total electric field 

E*" = ES + E1 
y y y 
t i (2.1) 

X s where E and E are the incident and scattered fields, respectively. The 
y y 

total field must satisfy the scalar Helmholtz equation 

i 
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(V2 + k2)sj = 0 (2.2) 

subject to the Dirichlet boundary condition 

Et = 0 on M. (2.3) 
y 

2 2 2 3 3 Here, V = — j ^ J anc* k = w/c where c is the speed of light. Conditions 
3x 3z 

on the behavior of the field near the edge and near infinity are also re-

quired. If the field is known, the E-polarization current I„ may be found 

from the field by using the equation for the discontinuity in the tangential 

magnetic field 
\ 

j-SE1 3Et A 
V z > = i i k r (x = 0+> z ) - a ^ ( x " z )} ( 2- 4 ) 

where y is the permeability of the (free-space) medium. The current source-

function for this case is given by (1.7) to be 

uE(z) = k2I£(z). (2.5) 

I„ is given by (2.4). 
hi 

For the H-polarization, the total magnetic field H^ is 

H* = HS + H 1 (2.6) y y y 

s i 
where H^ and Hy are the scattered and incident magnetic fields, respectively. 

The incident magnetic field can be written as 

Ri = e-ikr cos((j> - 0) (2 7 ) 
y 
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where (r,cj)) are the polar coordinates of the observation point and 0 is 

the angle of incidence given in Figure 2.1. The field must satisfy the 

scalar Helmholtz equation 

(V2 + k2)Hy = 0 (2.8) 

subject to the Neumann boundary condition 

3H1" 
— = 0 on M. (2.9) 
9x 

For this polarization the current I on the half-plane is H 
\ 

I H = H j (x = 0+, z) - H j (x = 0 - , z ) , ( 2 . 1 0 ) 

and the current source-function u , given by (1.10), is H 

d 2 lH 2 
uR(z) = — ~ + k IR (2.11) 

dz 

where I is given by (2.10). An expression for the current source-function, 

which is analogous to (2.10) for the current, can be found if a magnetic 

field source-function 

82H (x,z) 
T (x,z) = + k H (x,z) (2.12) 

y
 dz

 y 

is introduced. The expression for the current source-function then becomes 

uu(z) = Tl (x = 0+, z) - Tfc (x = 0-, z). (2.13) H y y 
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Bouwkamp (1946) shows that any solution of the wave equation may be 

differentiated to obtain another solution. This was apparently first 

mentioned by Lord Rayleigh (1897). In discussing the half-plane problem, 

Bouwkamp indicates that an n*" order derivative with respect to z of H^, 

for example, still satisfies the scalar Helmhotz equation (2.8) subject to 

the Neumann boundary condition (2.9). The order of the singularity at the 

edge of the half-plane becomes higher and higher after each differentiation. 

It is easily shown that T^(x,z), given by (2.12), obeys the scalar 

Helmholtz equation (2.8) subject to (2.9). Clearly, if H^ satisfies (2.8), 
2 

2 2 9 2 t t then (V + k )( — - + k )H = 0 and the magnetic field source-function T 
9z y * 7 

also satisfies scalar Helmholtz equation 

(V2 + k2)T^ = 0. (2.14) 

9T t „ „„t „„t 
Since 

9x 9z2 
9H 9H 

cxr\A — and — = 0 on M, the boundary condition on the 
3x 9x 

magnetic field source-function T^ becomes 

9TC 
= 0 on M. (2.15) 

9x 

It is seen that the magnetic field source-function satisfies exactly the 

same conditions as does the magnetic field H^. For this case, however, 

the incident field (the incident magnetic field source-function), found 

from (2.7) and (2.12), is 

Ti . ( + k2 ) Hi _ k2 s i n2 0 e-ikr cos(<(. - 9)> g ) 
y 9z y 
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This has the same spatial variation as H . The only difference is the 
2 2 

constant k sin 0. It becomes apparent that it might be possible to 

handle certain problems by a field source-function approach, i.e., solving for Ty and then finding H^ from (2.12). 

In order to find the current source-function u using a differential H 
equation approach, the scalar Helmholtz equation (2.14) with the Neumann 

boundary condition (2.15) and the incident field (2.16) must be solved for 

Ty. With T^ known, Equation (2.13) is used to find the current source-

function. Instead of actually solving the differential equation (2.14) 

subject to the boundary condition (2.15), both Equation (2.12) and the 
t * known solution for H^ of the half-plane problem are used. 

Sommerfeld (1896) was the first to give the exact solution of the 

half-plane problem. For the H-polarization problem, Sommerfeld's solution 

for the total magnetic field due to the incident field (2.7) is 

/2kr cos§(<J>-0) 

Hy(r,<|>,0) = -
-iiT/4 -ikr cos(<f>-0) . 2 1 T j e dx 

+ e -ikr cos(c|)+0) 

/2kr coŝ (<J>+0) 

. 2 
e dx (2.17) 

The solution for the magnetic field source-function can be obtained from 

(2.12) and (2.17). Bouwkamp (1946, Equation (6), page 471) gives expres-

sions for the partial derivatives of Sommerfeld*s solution. By using 
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2 t 2 
these expressions, 3 H^/3z can be straightforwardly found. The required 

solution for the magnetic field source-function becomes 

where 

Ty(r,<M) = k 2 sin26 Hj(r,<j>,6) + T N ( r , M ) (2.18) 

.t 

TN(r,<M) = 

2 § i(kr+Tr/4) r cosf<jn 
= k (-) cos|0 <cos|(j)(cos(j)-cose) - f (2.19) 

/k7 1 2ikr J • 

H1" on the right-hand side of (2.18) is given by (2.17). It may be shown 
A 

that T̂ j obeys the scalar Helmholtz equation subject to a Neumann boundary 
A 

condition. The subscript N is a reminder of this fact. T^ may also be 

written in terms of Hankel functions H^"^ as v 

TN(r,<M) = k 2 cos|6 ellT/4 £ an cos [ (n+§) <}, ] H ^ ( k r ) (2.20) 
n=0 2 

where 

a^ = i(§ - cos0) and a^ = - jg. (2.21) 

The current source-function may be obtained by substituting (2.18) and 

(2.20) in (2.13) after changing (r,<|>) to (x,z). It then becomes 

uu(z) = k 2 sin26 Iu + \ k2cos|9 el7T/4 \ a H (^(kz) (2.22) H H ZQ n = Q n n+g 
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where the a. are again given by (2.21) and the current Iu is given in terms 1 ri 
of Hy by (2.10). This gives the current source-function by a differential 

equation approach in terms of the previously derived results of Sommerfeld 

(1896) and Bouwkamp (1946). The last terms in (2.22) have been divided by 

the free space intrinsic impedance Z^ to conform with the notation of 

Chapter 3. From (2.19), both the magnetic field and current source-

functions become infinite as 

3. 
z 2 as z 0, 

i.e., as the edge is approached. 

If the scalar Helmholtz equation subject to the Neumann boundary con-

dition had somehow been solved instead of just differentiating Sommerfeld's 

solution, the summation index on the series in (2.20) would have extended 

from zero to infinity. From (2.18), it is seen that the solution for T^ 

is composed of two parts. The first part is that due to the incident field 

Note that the first term in (2.18) is just the magnetic field H^ 
2 2 i multiplied by k sin 0. This makes sense because the incident field T^ is 

just the incident magnetic field H^ multiplied by the same constant. The 

second part is just comprised of terms of the form cos (n+§H H^(kr). 

Such terms satisfy the Helmholtz equation, the boundary condition, and the 

radiation condition independently of the incident field. As n in the series 

(2.20) becomes larger, however, the order of the singularity at the edge 

becomes higher and higher. The edge condition, the subject of the next 

section, places an upper limit on the values allowed for n. 
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2.3 The Edge Condition 

Since its development in the 1940's, the edge condition has played 

a crucial role in electromagnetics problems for objects with edges. It 

should be expected to be equally important in the source-function develop-

ment . 

A number of papers were written in the late 1940's and early 1950's 

that obtained results which obeyed the edge condition from those that did 

not. In the case of half-plane problems, the proper results were often 

obtained from the improper ones by adding or subtracting functions, such 
(1) as those in (2.20) with radial variation H ^(kr), that cancel the improper 
n+g 

\ 

singularity at the edge. 
For example, Copson (1950, p. 283) uses integral equation techniques 

3. 
to find a solution to the half-plane problem which has z 2 edge behavior. 

By subtracting a term which has this same edge behavior and which also 

satisfies all of the conditions of the problem, he is able to obtain the 

correct solution. 

The procedure which Bromwich (1915) used to deduce the field of a 

dipole in the presence of a wedge yields inadmissable edge singularities. 

Bromwich's solution satisfies the edge condition only for the case when 

the axis of the electric dipole is parallel to the edge of the half-plane. 

Woods (1957) extends Bromwich's method to handle arbitrary orientations 

of the dipole. She finds that appropriate solutions of the wave equation 

must be subtracted from the Bromwich solution to satisfy the edge condition. 

These solutions are of the form 

. f sin(nH-g-) <j> 
H„Ti(kr) \ (3.1) n+T cos (n+g) <j>. 
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It is terms of this type which appear in (2.20) and are part of the mag-

netic field source-function in (2.18). 

In the Copson and Woods papers, each author finds that his solution 

has a singularity of too high an order at the edge. Each then finds 

another function with this same singularity which otherwise satisfies all 

of the requirements of the problem and subtracts this from the original 

solution to obtain the correct solution. The situation with the CSF tech-

nique is just the opposite. The straightforward solution of the integral 

equation (1.9) yields a result with an edge singularity that is not high 

enough. A term with the proper edge behavior must be added to the first 
\ 

part of the solution to obtain the correct solution. This is described in 

Section 3,3. 

The edge conditions for the E-polarization and H-polarization currents 

on the half-plane are 

I £ = 0( z"2), z 0, (3.2) 

and 

IH = 0( z^), z •* 0, (3.3) 

respectively. [See Mittra and Lee (1971, pp. 4-11).] The edge conditions 

for the E- and H-polarization current source-functions of (2.5) and (2.11), 

respectively, are 

uE = 0( z~^), z -v 0, (3.4) 

and 

3. 
u = 0( z 2), z •*• 0. (3.5) 
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Equation (2.22) for u^ satisfies the edge condition. It is the edge con-

dition which prohibits the addition of terms like those of (3.1) for 

n > 1 to the magnetic field source-function of (2.18). 

A function is said to be locally integrable if it is integrable in 

the Lebesgue sense over every finite interval. The current source-function 

u (z) of (2.11), satisfying the edge condition (3.5), is not locally inte-

grable. The formal integration of u near the edge gives H 
6 

f 
z 2 dz = 2 lim e 2 - 26 2. (3.6) 

0 

Since the limit does not exist this is a divergent integral. Such inte-

grals are discussed in the next section. 

2.4 Divergent Integrals and the Finite Part 

Some authors writing in the early 1950's commented that integrals of 

the type (1.9) may be divergent. In several places1 Bouwkamp (1954) points 
2 2 

out that if the d /dz operator of (1.6), for example, is taken under the 

integral sign, the resulting kernel is non-integrable. This is true, but 

it has been shown that the integral can be assigned a meaning by introduc-

ing the concept of the finite part. This concept dates back to A. L. Cauchy 

(1826) who used it to assign a meaning to the gamma function for negative 

values of the argument. Hadamard (1923) extends the concept to the multi-

dimensional case. A lengthy bibliography and a general discussion of the 

history of the finite part of divergent integrals is given by Bureau (1955, 
Jp. 40; pp. 68-69. 
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pp. 143-146). Both Hadamard (1923) and Bureau (1955) use the finite part 

concept in connection with solving partial differential equations. 

Friedlander (1951) uses a modification of the method developed by 

Hadamard for Cauchy's problem to solve the half-plane problem with time-

dependent excitation. He shows that the integrals arising in the solution 

process must be interpreted as finite part integrals. 

Equation (1.9) must be a finite part integral equation because u(z') 

is not locally integrable. If the notation "Fp" is used for the finite 

part, this equation becomes 

Fp u (z') H^Oelz-z'l) dz' = ^ s i n 6 e"ikz C O S 

0 z > 0. (4.1) 

This is a Fredholm finite part integral equation of the first kind over 

semi-infinite range. 

Methods for solving finite part integral equations have been studied 

by several authors. Butzer (1959) and Boehme (1963) use operational cal-

culus to study the finite part of divergent convolution integrals. They 

both treat finite part singular integral equations of Volterra type. 

Wiener (1962) treats linear finite part integral equations of Fredholm 

second kind and Volterra types. In a series of over thirty papers2 pub-

lished over the last fifteen years, he and his colleagues treat many finite 

part integral equations. However, it appears as if Fredholm finite part 

integral equations of the first kind with Hankel function kernels, such as 

2Generally published in Wiss. Z. M.-L. Univ. Halle—Wittenberg, Math. 
Nachr., or Beitrage zur Analysis. 
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(4.1), have not yet been treated explicitly. 

Belward (1972) obtains both the classical and generalized function 

solutions of the integral equation 

G(t)K0(|z-t|)dt = F(z), 0 < z < (4.2) 

by using the properties of fractional integrals. Here K^ is the MacDonald 

(modified Bessel) function. It is related to the Hankel function Hq"^ (x) 

by 

K q ( X ) = H ^ U X ) . (4.3) 

The solution of the finite part integral equation (4.1) is obtained by just 

making the indicated change of variable in Belward's generalized function 

solution. Generalized functions use the finite part concept in their de-

finition. [See, for example, Schwartz (1966a, pp. 33-43)]. A discussion 

of the Schwartz distribution theory formulation of the current source-

function technique is presented in Section 6.3. 

Hadamard (1923, pp. 134-141) introduces the theory of the finite part 

of divergent integrals and discusses several examples at length. This 

excellent discussion should be consulted by those interested in the total 

theory. Several examples of finite part integration which are relevant to 

the present work are given here. As a first example, consider the integral 

dt = 2 

fl (b-t)^ (b-t)2 
cL 

(4.4) 
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The right-hand side goes to infinity when it is evaluated at the upper 

limit. The finite part of this expression is found by retaining only the 

value obtained when the right-hand side is evaluated at the lower limit. 

Hence, 

Fp dt 
(b-t)l 

- 2 

(b-ap 
(4.5) 

As another example of finite part calculation, consider the integral 

it 
V dt, 
t2 

* x > 0, (4.6) 

Making the lower limit e and formally integrating by parts gives 

x it 
dt = -2 

it 

/t~ 

x it 
+ 2i 

/ T 
dt. (4.7) 

Clearly, in the limit as e -» 0, the first term becomes infinite. The 

finite part of this integral is defined as 

Fp 
it 
3. 

t2 
dt = lim 

e 0 

x it 
3. 

t2 
dt - _2_ 

/e 
x > 0. (4.8a) 

Substituting (4.7) in this expression and taking the limit gives 

x 
Fp 

it xx 
3. 

t 2 
dt = -2 + 4i 

. 2 
e dt, x > 0. (4.8b) 
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-5/2 A t singularity in the integrand obtains 

Fp 
x _ . x 
e , 2 e1^ 2. , 
7 7 2 d t = " I J + 31 FP 

it 
•V" dt, x > 0. (4.9) 
t2 

0 0 

More terms are added as still higher order singularities are considered. 

If both sides of (4.8b) are formally differentiated, note that equality 

is obtained. 

The above calculation is carried out by using integration by parts. 

This calculation may also be done by expanding e11" in its Taylor series 

around t = 0, integrating term by term, and retaining only the well be-

haved terms. This approach is valid in the complex plane and is described 

by Zemanian (1965, p. 58). For some finite part calculations, the Taylor 

series approach would be preferred to the integration by parts approach. 

Integration by parts will generally be used here. 

The nonlocally integrable portion of the integrand will be labelled 

a "pseudofunction" and denoted by "Pf." For example, consider the 
it 

pseudofunction Pf[l*(t) ^3—] where ln(t) is the unit characteristic func-0 u 

tion of the interval [0,x]. The integral of this pseudofunction is defined 

by 

it 
Pf [l*(t) V ] dt = Fp 

x it 
6 dt. (4.10) 3. 

t2 0 

The Pf notation is useful as a reminder to indicate that the finite part 

must be taken if the function is integrated over limits including the sin-

gular point. 
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A useful property of finite part integrals with difference kernels 

is that they may be differentiated under the integral sign as long as the 

finite part is taken of the resulting integral. Consider the integral 

Fp 

0 0 

XT e 
3. 

T 2 
dx Hq1^(Iz-tI) dt = - 4 / i f e -iir/4 z > 0. (4.11) 

Differentiating both sides of this equation with respect to z and using 

the fact that 

£ h < » ( M | ) - ( 4 . 1 2 ) 

obtains 

0 = Fp 

0 0 

XT e 
3. T 2 

d T ^ H ^ O z - t b d t , z > 0. (4.13) 

Integrating by parts with e as the lower limit yields 

Fp V d x ^ H ^ d z - t D d t = 

H ^ d z - t l ) Fp 
it oo 

V d x -

T 2 
0 e 

V H ^ d z - t D d t . 
t2 

(4.14) 

Substituting (4.8b) in the first term on the right-hand side shows that 
_x 

this term goes to infinity as e 2 as e goes to zero. The other terms at 

e and the terms at infinity vanish. The right-hand side becomes 
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it 
3. (|z-t|)dt 

2H(^1) (| z | ) 

7 f 
(4.15) 

In the limit as e goes to zero, this is just 

- Fp 
it , . 

V H^ (|z-t|)dt. 
t2 U 

(4.16) 

This can be seen by expanding e"*"*" and H^^ (| z-t | ) in their Taylor's series 

The first term in each series is, respectively, 1 and HQ"^(|z|). Substi-

tuting these in (4.15) shows that the divergent part of the integral in 

(4.15) is just given by ( | z |)//e. Thus, by the four equations above, 

(1) 

Fp 
it 

- j — 
.2 

H^1}(|z-t|)dt = 0, z > 0. (4.17) 

Using (4.15) and (4.17), it can be shown that 

Fp V H ^ d z - t b d t = 
t2 0 

e " H^'d.-tl) H ^ ' d . l ) 
3. t2 

dt = 0, 

z > 0. (4.18) 

In convolution notation, this is 

it, ,(D Pf [l+(t)e /t2] * HQ (ItI) = 0 , z > 0, (4.19) 

where l+(t) is the unit step function. This example shows that there are 

non-zero functions which yield zero on the right-hand side, i.e., the 
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homogeneous finite part integral equation has non-zero solutions. It also 

illustrates that the derivative operator may be taken under the integral 

sign as long as the finite part is taken of the resulting integral. 

Consider the integral of (1.6). Taking the second derivative under 

the integral sign as described above shows that 

dz 
IH(t) H^1}(k|z-t|)dt = Fp Iu(t) 

dt 2 H HQ"^ (k | z-t | )dt, 

z > 0, (4.20) 

where 

Fp 
dt 2 H Iu(t) H^(k|z-t|)dt = 

= lim 
e +0 dt 2 H H ^ k j z - t b d t + IR(t)) (k|Z|) (4.21) 

i 
In this case, the last term must be included because dl /dt = 0( t 2 ) as ri 
t 0 by the edge condition on IH(t). In this way, the integral equation 

(1.6) may be written in the form 

Fp uR(t) H^"^ (k | z-t | )dt 
4k . . -ikz cos6 — sm8 e , 
Z0 

z > 0 (4.22) 

where 

d 2 lH 2 
+ k "H = UH ( t ) (4.23) 
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These are the basic equations involved in the current source-function 

technique for the half-plane problem. 

2.5 Conclusion 

For the H-polarization half-plane problem, a "magnetic field source-

function" is introduced which allows the current source-function to be 

found from field quantities. In this way, a differential equation approach 

to finding the current source-function is derived. It is noted that all 
(1) terms of the form H i(kr)cos(n+§)<)> satisfy the source-free scalar Helmholtz n+2 

equation with the Neumann boundary condition, but that the edge condition 

restricts n to be at most one. The term for n = 1 has t 2 edge behavior 

and, therefore, is not integrable in the ordinary sense. The concept of 

the finite part of divergent integrals is introduced so that integral equa-

tions for the current source-function can be interpreted. The CSF tech-

nique requires that a finite part integral equation must be solved for 
u (z). It is shown that this integral equation may be found from Pockling-H 

2 2 2 

ton's integral equation by taking the (9 /9z + k ) operator under the 

integral sign. The next chapter treats the solution of the half-plane pro-

blem by the CSF technique. 
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3. THE CURRENT SOURCE-FUNCTION TECHNIQUE APPLIED TO 

THE HALF-PLANE PROBLEM 

In this chapter, the problem of diffraction of a plane wave by a 

perfectly conducting half-plane is solved analytically by the current 

source-function (CSF) technique. This problem is chosen because it may 

be solved exactly. It serves as a good example to illustrate the solu-

tion procedures required in the CSF technique. The harmonic problem with 

e 1 W t time dependence is considered. 

3.1 Maxwell's Equations and the Current Source-Function Technique 

The solution of electromagnetic field problems is based on Maxwell's 

equations. Assuming that any conducting inhomogeneities in a region have 

been replaced with the induced electric current acting in a homogeneous 

medium with constitutive parameters e and y, Maxwell's equations for the 

electric and magnetic fields E and H produced by these currents are 

VxH = V i + J (1.1) 

V*E = -Z H (1.2) 

V'E = p/e (1.3) 

V'H = 0 (1.4) 

2 where y = -iwe, Z = -imp, Zy = -k , and p is the electric charge den-

sity which is related to the current by 

V • J = icop . (1.5) 
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The CSF technique arises from a direct relationship between the fields 

and the sources. The curl of (1.2) is 

VXVxe = - Z Vx H = - Z(V E + J) (1.6) 

or 

W E - V2E = k2E - Z J. (1.7) 

The divergence of (1.1) is 

V'VxH = 0 = 7 V-E + V-J (1.8) 

or V-E = - | V-J. , (1.9) 

Using this in (1.7) gives 

V2E + k2E = - ̂  {VV-J + k2J}E - ^ U. (1.10) - - 7 - - 7 -

where U is the vector current source-function. Solving for the electric 

field E due to the current Ĵ  yields 

ikR 
E = ^ J f l U(r') 

where R = |r-r'| is the source-point to observation-point distance. A 

discussion of this result for three dimensions is given in Chapter 7. The 

present discussion is limited to the one-dimensional case. 

3.2 The E- and H-polarization Current Source-Functions 

The geometry for the E- and H-polarization half-plane problems is 

given in Figure 2.1. For the E-polarization, the current flows in the 
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y-direction only. The expression for J can be written as ii 

J E = IE(z)l+(z) 6 (x) y (2.1) 

where 1 + is the unit step function and 6 is the Dirac delta function. The 

current source-function becomes 

UE = V V J E 4- k2JE = k 2J E (2.2) 

because J is divergence-free. For the H-polarization, the current flows £i 
in the z-direction only. The current J can be expressed as H 

J H = IH(z)l+(z) 6 (x) z (2.3) 

and the current source-function for this case becomes 

UH = V W H + k JH = 

£ ( I H V 6 ( x ) * + 6 ( x ) 
dz 

(IH1+) z (2.4) 

For a proper interpretation, these derivatives should be performed using 

Schwartz distribution theory. The reader is referred to Section 6.2 for 

a discussion of Schwartz distribution theory. 

Substituting (2.2) in (1.11) yields the expression for the E-

polarization scattered field. After using the fact that 

ik /y. 2 2 2 x + n + z 

J2 2 2 /x + n + z 
dn = iTTH^1) (k A 1 + z 2 ), (2.5) 
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the expression becomes 

where 

^ = - y 4k u-.Cz1) H ^ C k + (z-z1)2 )dz' (2.6) ii U 
0 

uE = k2IE. (2.7) 

The total field E*" is equal to the sum of the incident and scattered fields, 
t i s or E = E + E . On the half-plane, the tangential component of the total 

electric field must be zero. Applying this boundary condition gives the 
\ 

integral equation for u„(z'), £i 

, ,„(1)/, i i K j i 4k „i, „ s 4k -ikz cos6 _ ,„ u (z') H^ Ck z-z )dz = — E (x=0, z) = — e , z > 0, (2.8) 
0 0 0 

where 0 is the angle of incidence defined in Figure 2.1(a). If Ug(z') is 

found, then the current I„(z') can be found from (2.7). In this case, the h. 
CSF formulation is only trivially different from the usual formulation. 

For the H-polarization, however, the CSF formulation differs greatly 

from the customary integral equations. Substituting (2.4) in (1.11), the 

expression for the scattered electric field becomes 

r? 
= " * 1 /z'Jx' & < W 6 ( X , ) ^ /(x-x')2

+ CZ-Z')2 )dx'dz< 

- z o 
" Z 4k uu(z') H ^ C k /x2 + Cz-z')2 )dz' (2.9) H U 
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where 

d \ 2 u R = 1 + k IR. (2.10) 
dz * 

The integrals in (2.9) must be taken as finite part integrals. The inte-

gral equation for uu(z') is obtained by applying the boundary condition 

that the tangential electric field must be zero on the half-plane. The 

integral equation becomes 

Fp uH(z') H^Oclz-z' |)dz» = E1 (X=0, Z) sinQ e i k z C O S 0, j H u z 
u \ 

z > 0, (2.11) 

where 0 is the angle of incidence defined in Figure 2.1(b). If uu(z') is 

found from this integral equation, then the current I (z') may be found H 
from (2.10). The integral equations (2.8) and (2.11) for u„ and uu are hi n 
remarkably similar in form. The main difference is that (2.8) is an 

ordinary integral equation while (2.11) is a finite part integral equation. 

3.3 The Solution of the Integral Equations for u(z) 

In this section, the integral equations (2.8) and (2.11) are solved 

for u„ and uu, respectively. For the finite part equation (2.11), one or h n 
more solutions of the homogeneous equation 

Fp w(z') Hq"^ (k|z-z'|)dz' = 0 , z > 0, (3.1) 
0 

may be added to the solution of the ordinary integral equation to obtain 

another solution. The number of solutions that may be added is related to 
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the edge condition on the current source-function. The homogeneous inte-

gral equation (3.1) is solved by three related methods. These are (1) 

the Wiener-Hopf technique, (2) an application of the method of Belward 

(1972), and (3) the differentiation of a (locally integrable) solution to 

the ordinary integral equation. 

Both the integral equation for the E-polarization and the ordinary 

part of the integral equation for the H-polarization may be written as 

0 

c, u(l)„ | i | j t -ikz cost f (z ) Hn (k | z-z I)dz = k — e U Aq 
z > 0, (3.2) 

where K = 1 for the E-polarization and K = sin0 for the H-polarization. 

The solution of this integral equation has been found in several different 

ways. Magnus (1941), for example, solves it using series of Bessel func-

tions. Copson (1946) and Noble (1958, p. 228) use the Wiener-Hopf tech-

nique. It has also been solved using the Kontorovich-Lebedev transform 

by Lebedev et al. (1966, pp. 389-390). The solution is 

Kk2 4e f(z) = 1 (z) f^- I* 
+ Z0 A 

xtcz i sin(0/2) e . A -ikz cost — — — i h sinO e 
Jl Jkz 

Az (1+cos G ) 
. 2 

e X t dt 

/kz(l+cos9) 
(3.3a) 

.. , . Kk 4e^TT/'4 0 ikz d 
= 1 (z) tarry e ~rr 

+ Z0 vV 2 d z 

-ikz(l+cos0) . 2 it J , e dt 

? , , , 2Kk iir/4 . 0 = 1 (z) — — e silt + 6 z 
. uCD/, \ , nz 0 -ikz cost l Hi (kz) + v2 cosy e 

2 L 

, (3.3b) 

kz(l+cos0) 

H^1)(t)dt 
0 

(3.3c) 
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Kk2 4e17r/4sin(6/2) ikz d2 -ikz(l+cos6) = 1 (z) — e ^-r e . (3.3d) 
/2k dz2 

A i 
In (3.3d), the operator d2/dz2 is the semiderivative operator of Oldham and 

Spanier (1974, pp. 115-131). Hi1^(t) is the Hankel function of the first 
2 

kind and order 

The function f(z) has edge behavior 

z 2 as z 0. (3.4) 

Since u , as given by (2.7), is allowed to have this same edge behavior, 

the solution for u„ is ii 

uE(z) = f(z) (3.5) 
K = 1 

From (3.5) of Chapter 2, the current source-function for the H-polarization, 

given by (2.10), must satisfy the edge condition u u = 0 ( z 2 ) as z 0. n 
This means that the function f(z) of (3.3) alone does not have to be the 

3 

total solution of (2.11). Solutions of (3.1) which behave as z 2 as z 0 

may be added to f(z) without violating any of the conditions of the pro-

blem. The solutions of the homogeneous finite part integral equation are 

found in each of the next three sections by different methods. 

3.3.1 Solution of the Homogeneous Finite Part Integral Equation by the 

Wiener-Hopf Technique 

The Fourier transform pair that will be used here is 

F(a) = — 
/2TT 

f(z) e1CXZdz, (3.6a) 
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f(z) = 
/2TT 

F(a) e da. (3.6b) 

When f(z) or F(a) are pseudofunctions these transforms must be defined 

either in the sense of distributions or as finite part integrals. The 

theory and calculation of pseudofunction transforms, along with a large 

table of transform pairs, is given by Lavoine (1963). For a general des-

cription of the Wiener-Hopf technique, the reader is referred to Mittra 

and Lee (1971, pp. 73-84). 

The homogeneous finite part integral equation (3.1) may be rewritten 

as 

Pf w (z') (k|z-z' |)dz* = b_(z) , - oo <z < oo (3.7) 

where 

Pf w+(z') = 
w(z') z' > 0 

0 z' < 0 
(3.8) 

and 

b (z) = 
0 z > 0 OO 

,(1) b(z) = Pfw+ HQ (k|z-z'|)dz' z < 0. 
(3.9) 

Taking the Fourier transform of (3.7) yields 

/27 W.(a)G(a) = B (a), T < Ima < T,, + - - + (3.10) 

where 

W (a) - — Fp w(z) e10lZdz, 
* J0 

(3.11) 
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G(cx) = 
/2tt 

H^Cklzl) eiaZdz = / | - = = , (3-12) 
* X 2 /k - a 

and 

B (a) = 1 

/27 
b(z) ei0tZdz. (3.13) 

Equation (3.10) holds in the strip <Ima <t + where the regions of re-

gularity of W , G(a), and B overlap. Factorizing /2tT G(a) into G.(a) and *T" — "T 

G (a) gives 

»/27G(a) = G (a) G (a) = . (3.14) 
a 

Equation (3.10) become 

B_(a) 
W+(a) G+(a) = t_ < Im a < x+. (3.15) 

Since the left-hand side is regular in the lower half plane Ima < x + and 

the right-hand side is regular in the upper half plane Imot>T_, then by 

analytic continuation, both sides must equal the same entire function P(a). 

Thus, 

B_(a) 
W+(a) G+(a) = — (ô y = P ( a )' f° r a 1 1 a' ( 3- 1 6 ) 

To determine the nature of P(a), consider the asymptotic form of the above 

equation and look at the asymptotic representations of W + and G+. The 

asymptotic form of W+(a) is related to the edge behavior of w(z), which is 

required to be 
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3. 
w(z) = 0( z 2 ) as z -y 0+. (3.17) 

Using a generalization of the Abelian initial value theorem, it is found 

that 
i 

W+(a) ~ (-ia)2, |a| -> °° with lma>0. 

Since G,(a) ~ (a) 2, lal -> it follows that P(a) = W, (a) G^(a) ~ C, -r + + |a| where C is a constant. 
The solution for W+(a) becomes 

W+(a) = C /k+a / Jl. (3.18) 

Taking the generalized inverse transform gives the required homogeneous 

solution, which is 

( \ c w(z) = 
2/n~ • 

/k+a e "'"aZda = — 
ikz 

2 /n 
/a e da. (3.19) 

The branch cut for /a will be taken along the negative imaginary axis in 

the a-plane. For z < 0, the path of integration must be closed in the 

upper half of the a-plane and for z > 0 it must be closed in the lower 

half. These paths are shown in Figures 3.1(a) and 3.1(b), respectively. 

For z < 0, the integral in (3.19) is identically zero, as expected. For 

z > 0, the path of integration may be deformed to enclose the branch cut 

as shown in Figure 3.1(c). The integral in (3.19) becomes 

r- -iaz -iir/4 va e da = -2ie /ff e" dB = 
p 1 +P 2 0 

= -2ie i i r /Vf)/z 2. (3.20) 
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Figure 3.1. Integration Path for (a) z < 0, and (b) z > 0; (c) Deformed 
Path for z > 0. 
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where T is the gamma function. The expression for w(z) then becomes 

p . ikz 
w(z) = - ^ e 1 7 r MPf ^-5- 1 (z) (3.21) 

z2 

where C is a constant. This is the required homogeneous solution of the 

finite part integral equation. Note that it has the required edge behavior. 

This same result may also be obtained by using the fact that multipli-

cation by a in the transform domain is the same as differentiation with 

respect to z in the spatial domain. Thus, 

Fp /a e da = a -laz, . d — e da = x -j— r- dz va 
— 00 

-laz 
da 

DO 

= 2 A" ei7T/4 ^ ( z " % » ) = - A eilT/4 Pf (z"il+(z)) (3.22) 

and 

w ( z ) = _ | ei(kz+TT/4)pf z-a 1 + ( z ) (3. 2 3 ) 

as before. 

3.3.2 The Solution of the Homogeneous Finite Part Integral Equation from 

Belward's Results 

Belward (1972, pp. 908-911) finds the solutions of the homogeneous 

integral equation 

GR(t) Kq(|z-t|)dt = 0 , z > 0, (3.24) 

in a space of generalized functions, where K^(t) is the MacDonald (modified 

Bessel) function. He uses the term "generalized function" in the sense 
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defined by Jones (1966), i.e., that "a generalized function is an equiva-

lence class of regular sequences." This definition may be shown to be 

equivalent to the definition of a distribution as a continuous linear 

functional [see Antosik, Mukusinski, and Sikorski (1973, p. 235)]. He 

finds 

,n -t 
G„(t) = ( a — - + ••• + an ) V , t > 0, (3.25) 
H dt ° t2 

(1) 2 where n and the a. are arbitrary. Since H_ (x) = -7— Kn(-ix), it could be j 0 ITT 0 
argued that the solution of (3.1) would be obtained if "t" in (3.25) were 

replaced by -ikz. Although it is not cl^ar whether this procedure can be 

justified mathematically, it gives the same result as was obtained with the 

Wiener-Hopf technique. Application of the edge condition gives a.. = 0 for 

j >0. The solution becomes 

ikz 
w(z) = Cf -3, z > 0, (3.26) 

(kz) 2 

where C' is a constant. 

3.3.3 The Solution of the Homogeneous Finite Part Integral Equation by 

Differentiation 

Consider the integral equation 

0 
f(z') H ^ V l z - z ' D d z - i k a Z, z > 0, (3.27) U ^ 

where -1 <_ a <_ 1. The solution of this integral equation is given by (3.3) 

except with cos9 replaced by a. Applying the operator L = ~ + ika to both 
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sides of (3.27) yields 

M „U) Fp Lf(z') HQ (k|z-z1|)dz' = 0 , z > 0, (3.28) 
0 

so that the solution of the homogeneous finite part integral equation is 

w(z) = ( 4~ + l k a ) f(z) dz 

,3 iiT/4 /T7- ikz 
= _ M _ e v_L_a e ^ ; z > 0. (3.29) 

ZQ A (kz) 2 

For any a ^ 1, this procedure yields the same solution as before. The ex-

pression for w(z) for the special case a = 0 was developed in Section 2.4. 

3.4 The Consistency Condition 

Redefining w(z), the homogeneous solution of the finite part integral 

equation, to be the value given by (3.29) for a = 0 and K = 1 gives 

,3 iir/4 ikz 
w(z) = - P f ^ — 3 - l (z). (4.1) 

ZQ A (kz)2 

The solution of the finite part integral equation (2.11) for uu(z) becomes n 

Uu(z) = sine v(z) + A w(z) (4.2) rl 

where A is a constant and v(z) = f(z)/ic. f(z) is given by (3.3). 

The relation between the current source-function U H( Z) the current 

Iu(z) is, from (2.10), H 

d 2 lH 2 
— + k ZI R = uR(z), z > 0. (4.3) 
dz 
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This is an inhomogeneous second order differential equation for Iu, the H 
2 2 2 

half-plane current. The inverse of the operator £ = ( d / d z + k ) can 

be represented as an integral operator with a Green's function kernel. 

This Green's function g(z,z') is a solution of the inhomogeneous differ-

ential equation 

£*g = 6(z-z') (4.4) 

subject to certain boundary conditions where £ is the adjoint of 

The adjoint boundary conditions are found by determining boundary 

conditions such that 

<£n+, = <n+, (4.5) 

oo 
2 2 2 where (a,3) is shorthand for /aSdz and X = (d /dz + k ). The + sub-

—oo 
script denotes that ri is multiplied by the unit step function. In (4.5) 

n takes the place of I and ^ is the function for which the adjoint bound-H 
.1 

ary conditions are to be found. The fact that the current I = 0( z2 ) 
i 

as z -> 0 for the H-polarization gives n(0) = 0 and n = 0( z 2 ) as z 0. 

Clearly, £n + is allowed to be a pseudofunction because 

3 
<£n = 0( z 2 ) as z -*• 0+. (4.6) 

For arbitrary this means that must be interpreted as the finite 

part integral 

Fp 
, 2 

( + k n ) z)dz. (4.7) 
0 d z 

Setting the lower limit to e and integrating by parts yields 
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2 
( ^M- + k2n ) <Kz)dz = g- H z ) 
dz 

n(z) "dz 

n(z) ( + k2^)d2 
dz 

(4.8) 

Because of the edge condition on n, 

= 0(z ®) as z 0+, 

the finite part integral becomes 

Fp 
0 
C£n) <Kz)dz = lim 

e ->0 
dn 

(£n) ii>(z)dz + ^ i|>(z) 

= in 
dz ip(z) -n(z) d^ dz 

00 00 

+ 
0 

n(z) £%dz. 
0 

(4.9) 

In order for (4.5) to hold, the boundary terms in (4.9) must vanish. 

The boundary conditions to be satisfied are 

n(z) ̂  0 as z -> 0, 

dn 
dz <Kz) 0 as z 

and dijj „ n(z) y 0 as z -> dz 

(4.10a) 

(4.10b) 

(4.10c) 

The first condition is always satisfied because n(0) = 0. The current 

asymptotically behaves like 

-ikz cosQ I ~ e as z -y 00. n 

After limiting 6 to be in the range 90° < 6 < 270°, a small imaginary part 

may be introduced in k such that k = k^ + ik2. This gives 
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dn k„z cos0 . , „ n, 3 e 2 as z -»- °° with cos0 < 0. dz 

From (4.10), and di|;/dz must exhibit the exponential form 

, dip ip, ~ e as z -> 

with £ > k^cosQ in order for the boundary terms to vanish. It turns out 

that t, = k^ so that this condition is always satisfied. This is the only 

adjoint boundary condition that is required. A condition at zero is not 

required for the adjoint problem. The above restriction on 0 is necessary 

because a plane wave incident field in a lossy medium appears to become 

infinite at plus infinity for angles of incidence 0 < 90° [See Figure 2.1]. 

If the incident plane wave itself exhibits this behavior, then it makes 

sense that the current does also. It is assumed here that 0 is initially 

restricted to the range 90° < 0 < 270° so that the incident field and the 

current approach zero at infinity. 0 is extended to all angles of inci-

dence only after the calculations have been completed. 

The solvability of the second order differential equation 
2 2 2 

(d /dz + k )y = f(z), a < z < b, such that certain boundary conditions 

are satisfied is closely related to the existence of solutions to the 

homogeneous system and to the adjoint homogeneous system. In the case of 

a scatterer of finite extent, solutions of the homogeneous system arise 

only at resonance, i.e., when the physical extent of the scatterer matches 

a multiple of a half wavelength of the incident field. For the semi-

infinite case, the homogeneous system has no nontrivial solutions. For 

non-singular differential equations, it may be shown that if the homogeneous 

system has only the trivial (zero) solution, then the adjoint homogeneous 
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system has only the trivial (zero) solution. For the details, the reader 

is referred to Stakgold (1967, Volume I, pp. 84-85). For problems involv-

ing pseudofunctions and the finite part, this is no longer true. The 

adjoint homogeneous system usually has solutions even though the homoge-

neous system has only the trivial (zero) solution. 

For the half-plane problem, the homogeneous, inhomogeneous, and 

adjoint homogeneous systems are 

The homogeneous system 

£p = 0 0 < z < ° ° p(0) = 0 p + 0 as z + "> (4.11a) 

The inhomogeneous system 

£n = f 0 < z < ° ° n ( 0 ) = 0 ri 0 as z 00 (4.11b) 

The adjoint homogeneous system 

£*<J/ = 0 0 < z < 00 + 0 as z <*> (4.11c) 

* 2 2 2 
where £ = £ = ( d / d z + k ) . The radiation condition must also be satis-
fied. As was shown previously, the adjoint homogeneous system does not 

have a boundary condition to be satisfied at z = 0. The differential 
—"ilcz +ikz 

equation of (4.11a) has solutions [e , e ] or [sin(kz), cos(kz)], 

but none of these satisfy the boundary conditions so (4.11a) has only the 

trivial solution p = 0. The adjoint homogeneous differential equation also 

has the above solutions, but in this case one of them does satisfy the 

given boundary condition (again assuming that k = k^ + i k^, 0 < k^ << 1, 

and that 0 is restricted). The non-zero solution of the adjoint homoge-

neous system (4.11c) is 
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The following theorem is similar to one given by Stakgold (1967, Volume I, 

p. 85). 

Theorem: System (4.11b) has no solution unless the consistency condition 
CO 

f f(z) iKz)dz = 0 is satisfied for every ip(z) which is a solution of (4.11c) 

Proof: £ is a second order differential operator and hence can have no 

more than two non-zero linearly independent homogeneous solutions. Only 

one of these goes to zero and is an outgoing wave as z These are the 

only conditions required on i/j by (4.11c). Multiplying (4.11b) by iji and 

(4.11c) by n, subtracting, and integrating from 0 to °° gives 

Ol>£n - n£*<j;)dz = f(z) iKz)dz. (4.12) 
0 0 

The left side is zero by applying the results of (4.10) to (4.9). There-

fore, 

f(z) <Kz)dz = 0 (4.13) 
0 

must hold for every ^ that satisfies (4.11c). Note that for the trivial 

solution \p(z) = 0, the consistency condition is always satisfied. 

The constant A in the current source-function (4.2) can now be found. 

The system 

£I„ = u„(z) 0 < z < » I„(0) = 0 I„ 0 as z °° (4.14) H rl ti ri 

is exactly of the form of (4.11b). Here the current source-function u^(z) 

takes the place of f(z). In order for the system (4.14) to have a solution, 

the consistency condition (4.13) must be satisfied with u^ in place of f. 
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Substituting (4.2) in (4.13), the consistency condition becomes 

0 = u„(z) ip (z)dz = sin0 n v(z) eikzdz + A w(z) eikzdz. (4.15) 

Solving for A obtains 

sin6 v(z) e dz 

. . ikz, w(z) e dz 

(4.16) 

Therefore, there is only one value of A for which a solution for I exists. H 
ikz 

The integrals of w(z) and v(z) with respect to e , where w(z) and f(z) = 

KV(z) are given by (4.1) and (3.3), respectively, become 

/ \ i k zj v(z) e dz = 2ik 
Zosin(0/2) (4.17) 

and 

Fp ikz w(z) e dz 2 /2 k 2 

0 
J0 

(4.18) 

Substituting these in (4.16) and simplifying yields 

/2 cos(9/2) A ik (4.19) 

The unique solution for uu(z) becomes H 

t \ • Q /- \ . cos (8/2) , . u R(z) = sine v(z) + w(z) (4.20) 
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This is the required result. The solution for I is found in the next H 
section. 

3.5 The Current in Terms of the Current Source-Function 

The solutions for u and u , the E- and H-polarization current source-E H 
functions, are given by (3.5) and (4.20), respectively. The relations 

between u^ and and and are given by 

I E=-^-u E(z) (5.1) 
k 

and 

d 2 lH 2 + kZIR = uR(z). (5.2) 
dz 

The first expression is trivial. In the second, the solution for I may rl 
be found using Green's function techniques. The solution is 

lH(z) = uR(z') g(z,z')dz' (5.3) 
0 

where g(z,z') is the Green's function for the operator in (5.2). This 

Green's function may be found by solving the inhomogeneous distributional 

second order differential equation 

£*g = 6(z-z'), 0 < z,z' < g outgoing as z' •*• (5.4) 

subject to the adjoint boundary conditions. No boundary condition is re-

quired at z' = 0 and only a radiation type boundary condition is required 

at infinity. The constraints on the Green's function are 
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(1) g(z,z') continuous at z' = z, 

(2) 
dg_ 
dz' z'=z+ dz' = 1, (5.5) 

and (3) g(z,z') is an outgoing wave near infinity. 

For z' ^ z, (5.4) becomes 

£*g = 0. 

ikz' -ikz' 

This has solutions e , e , sin(kz'), or cos(kz'). Although a bound-

ary condition at z'=0 is not required, one may be imposed. If the condition 

g(z, z'=0) = 0 is imposed on g, then 

g(z,z') = • 
A(z) sin(kz') z > z' 

ikz' B(z) e z < z '. 
(5.7) 

Enforcing the conditions (5.5) gives 

, ,, 1 , iklz-z'l ik(z+z')N g(z,z') = ( e e ) (5.8) 

The current Iu is found from (5.3). It is interesting to note that since rl 
oo ikz' 
L uu e dz' = 0 by the consistency condition (4.15), the current may also U n 
be written as 

IH = u„(z*) E(z-z')dz' rl (5.9) 
0 

1 ik z 
where E(z) = _ e 1 1. This is just the "fundamental solution" for the 

operator £ as is used in the theory of distributions. The current is 

just the convolution of u„ with E. Thus, the integral in (5.3) has been rl reduced to the convolution integral in (5.9). 
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Substituting (4.20) for uu in (5.9) obtains rl 

IH(z) sinQ 
2ik 

, ,, iklz-z'L , , Jl cos(9/2) 
V ( Z } 6 d z + ik(2ik) 

0 

, ,. ik z-z1 , , 
w(z ) e 1 'dz . 

(5.10) 

The integrals in this expression are found to be 

, iklz-z'I_ , 4ke v(z ) e 1 'dz' = 
in/4 

ZQvV 

e ± k Z (F2(oo) - l+(z)F2(2kz)) 
sin(0/2) 

+ 1+ ( Z ) 6 ^ COS0F2(kz(l+cos6)) (5.11) 

and 

Fp , ikIz-z , w(z') e ' 'dz' = 

,,2 -iir/4 ., 
6 /2 e l k Z (F9(») - l+(z)F2(2kz)) 
z0AT 

(5.12) 

where 

F 2(X) 

/x 
e U dt 

iiT/4 
/TT - elx ud» i> -ix) 

o 

= M(i,i , ix). (5.13) 

U and M are Rummer's functions and F2(°°) = /n~ Substituting (5.11) 

and (5.12) in (5.10) and simplifying gives 
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_ / v 4e ^ ^ -ikz cost I (z) = 1 (z) e 
z o A 

Jl iir/4.. , . -ikz cosf = — e 1 (z) e 

/kz(l+cos0) 
. 2 

e dt (A/m) / (V/m) 
0 
kz(l+cos0) 

H!(1)(t)dt 

(5.14a) 

(5.14b) 

2 /(2k) e -iTr/4 0 , , . ikz d 2 -ikz(l+cos0) COST 1, (z) e r e 2 + v dz 
(5.14c) 

where H^"^ (t) is the Hankel function and the d ^/dz 2 operator is the 

semiintegral operator of Oldham and Spanier (1974, pp. 115-131). It is 

important to note that 

00 -ikz 
V Z ) = ~2ilT 

i V ? ' uu(z*) e dz' = 0 , z < 0. n (5.15) 
0 

The integral is identically zero for all negative z. This is true because 

of the consistency condition (4.15). Thus, 

IH(z) = u„(z') E(z-z')dz', n — 00 < Z < (5.16) 

The current is given by the integral for all values of z. 

3.6 Discussion of the Results and Conclusions 

The main result of this chapter is the solution for the current I^C2) 

induced on a perfectly conducting half-plane due to an incident plane wave. 

The solution to the integral equation 

Fp| uH(z') HQ"^ (k|z-z'|)dz' =f^sin0 e"lkz C O S 0, z > 0 
0 ° 
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is found by adding the solution of the ordinary integral equation to a 

solution of the homogeneous finite part integral equation such that the 

edge condition is satisfied. The success of this procedure requires that 

the form of the solution of the homogeneous finite part integral equation 

be unique to within an arbitrary multiplicative constant. All three ways 

of obtaining the homogeneous solution strongly suggest that this is true 
ikz — 

since they all exhibit z-dependence of the form Pf l+(z)e /(kz)2. One 

part of a source-free solution to the wave equation (described in Section 

2.2) also has z-dependence of this form. 

The constant multiplying the homogeneous solution is found by enforc-

ing the consistency condition 
<uR(z), e±kz> = 0. 

2 2 2 The current is found by inverting the d /dz + k operator to obtain 

I = u *E, all z. H. rl 

The fundamental solution E may be used instead of a Green's function be-

cause of the consistency condition. The result for given by (5.14), 

is identical with the results obtained by other methods. 

The current source-function technique has several possible advantages 

over the Hallen or Pocklington integral equation techniques for numerical 

solution. The CSF technique retains the simplicity of the kernel of the 

Hallen-type integral equation and does not require a differentiation oper-

ation in evaluating the matrix elements in the moment method as the 

Pocklington approach does. Furthermore, the forcing function of the CSF 
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integral equation is just the incident field. No operation on the inci-

dent field is required as is the case with the Hallen formulation. Since 

the integral operator is simplified, the behavior of the current source-

function is expected to be somewhat similar to that of the incident field. 

Of course, the CSF technique requires an additional operation to find the 

current, but this is a straight-forward integration and may be separated 

from the considerations involved in the moment method. Local inaccuracies 

in the moment method solution for the current source-function should not 

drastically effect the overall accuracy of the current since the induced 

current is obtained by integrating over the (approximately represented) 
\ 

source-function. 
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4. THE NUMERICAL SOLUTION OF THE HALF-PLANE PROBLEM: E-POLARIZATION 

The closed form solution of the half-plane problem with E-polarization 

plane wave incidence is discussed in Chapter 3. The present chapter is 

devoted to the moment method numerical solution of the same problem. The 

method of moments discretizes an integral equation into a matrix equation. 

This procedure has been widely discussed by Harrington (1968) and others 

and so is not discussed here in an introductory sense. The transform 

domain numerical solution of the half-plane problem is discussed by Li 

(1972). 

The results obtained here are used later to solve for the H-

polarization current by the current source-function technique. The half-

plane problem is chosen primarily because its exact solution is known and 

can be used as a standard to judge the accuracy of the numerical procedures 

described in this chapter. The computer programs used in this work appear 

in Appendix D. 

4.1 The Integral Equation Formulation for the E-polarization 

The geometry for the E-polarization half-plane problem with plane wave 

incidence is given in Figure 2.1. The integral equation for the current is 

derived in Chapter 3 and is given by (2.7) and (2.8) of that chapter. It is 

C O 

' IE(z') H ^ V l z - z ' b d z ' = ^ e ' i k z C O S 0, z > 0, (1.1) 

where I^z') is the y-directed E-polarization current. From energy consid-er 
erations for this structure and polarization 
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|IE(z) | = 0( z 2 ) as z 0. (1.2) 

This edge condition on the current is used to construct an appropriate ex-

pansion function set for the method of moments. 

4.1.1 The Physical Optics Current, IpQ 

A moment method numerical solution may be obtained only if the problem 

is reformulated to make the range of integration in (1.1) finite. Far from 

the edge, the current on the conducting half-plane is about the same as it 

would be if the conducting plane extended to infinity in all directions. 

Applying this concept allows us to say that the current I„(z) approaches a 
\ h 

known function, the so-called physical optics current IpQ(z), as z becomes 

large. 

The geometry for solving for the physical optics current Ipo(z) for 

the half-plane problem is just that of Figure 2.1(a) except that the metal 

is extended to infinity in all directions. For an incident plane wave 

„i -ikx sin0 -ikz cos9 * _E = e e y, (1.3) 

the total tangential magnetic field is 

H* = H 1 + Hr = -(2/Zn)sin0 cos(kx sine) e~lkz C O S 0. (1.4) z z z (J 

The physical optics current is the difference in the tangential magnetic 

field above (l^) and below (H^) the metal surface. It becomes 

" fTTt „t, 2 . Q -ikz cos0 * ,, ,-N I P O = x X[H2 - H J - — sine e y. (1.5) 

The physical optics current for the E-polarization is seen to be directed 

in the y direction with magnitude 2sin0/ZQ. 
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4.1.2 The Integral Equation for the Difference {I„ -h r U 

The integral equation for the E-polarization half-plane current is 

given by (1.1). Adding and subtracting terms in I in the unknown yields 

{IE - Ipo}(z') H^Cklz-z' |)dz' = 

4 -ikz cos9 2 . „ 
kZ~ e ~ 0 0 

-ikz'cos6 (1) HQ (k|z-z'|)dz'. (1.6) 

Transforming variables and substituting the identity 

e-ix cose H(i)(|kz _ x| ) d x !. 

-ikz cosef 2 
\sinf 

iy cos0 tI(l) , \ j e HQ (y)dy 
kz 

(1.7) 

in (1.6), one obtains the integral equation 

{IE - I p Q} Hq"^ (k|z-z'|)dz' = 

kZ 
2 . . -ikz cos0 sin0 e 
0 

iy cos0 T1(l) , , , „ e Hq (y)dy, z > 0. (1.8) 
kz 

The closed form solution of (1.8) may be obtained from Equation (3.3) of 

Chapter 3 and (1.5). In (1.8) the unknown is the quantity {l£ - IpQ}. 

This difference should approach zero for large z', making it possible to 

truncate the integral at some finite distance kL. If the upper limit kL 

is chosen large enough, then 
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00 

{IE - I p oHt) ^q ( I kz-t | )dt -(1) 

0 
kL 

{I„ - Ipn}(t) H^"^ ( | kz-t | ) dt = RHS(kz), z > 0, (1.9) 
0 

where RHS is the right-hand side of (1.8). 

4.1.3 The Choice of Expansion Functions 

The integral equation (1.9) is solved numerically by the method of 

moments. The unknown, {l„ - I.,.,}, is expanded in two similar basis func-t rU 
tion sets. The first is a hybrid expansion function set based on edge 

condition considerations. The second is'an all-pulse expansion function 

set which is chosen because of the simplicity of matrix element evaluation. 

Point matching is used in both cases starting at the edge. The hybrid 

expansion function set that is used is one with a half-width t 2 expansion 

function at the edge and with full-width pulse expansion functions away 

from the edge. This expansion is shown in Figure 4.1(a). The use of a 

half-width edge subsection was suggested by Pearson (1975). This allows 

the match points to be uniformly distributed. The all-pulse expansion 

function set that is used is one with a half-width pulse expansion func-

tion at the edge and with full-width pulse expansion functions away from 

the edge. This expansion is shown in Figure 4.1(b). It is of interest 

to observe the effect that such a crude edge expansion function has on 

the solution away from the edge. 

The hybrid basis function expansion may be written as 

I 

0 < t < H 
(1.10a) 

x. 
3 

(2j-3)H < t < (2j-l)H, 2 <j < 200, 



Hybrid Expansion: jlE-lp0| 
zJ/2 Edge Behavior 
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0 H 2H 3H 4H 5H 397H 398H 399H 
<5-testing 

\ 

(a) 

i All-Pulse Expansion: jlE- lP0 

• • • 397H 398H 399H 

S- testing 
(b) 

Figure 4.1. The Expansion Function Sets. (a) The Hybrid Expansion, 
(b) The All-Pulse Expansion. 
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£ where H (=0.05) is the subsection half-width and the xj's a r e unknown con-

stants. "r" is used because the hybrid expansion has a one over square 

r_oot expansion function at the edge. The all-pulse expansion may be writ-

ten as 

{ I E " I P 0 } ( t ) * 
x? 0 < t < H 

(1.10b) 
xP (2j-3)H < t < (2j-l)H, 2 < j < 200, 

where the xj's a r e unknown constants. "p" is used because the all-pulse 

expansion is composed of pulse functions. Substituting (1.10a) in (1.9), 

the approximate integral equation becomes 
\ 

(2j-l)H H 
r 

X1 
0 

_I m N 
t 2 H^±;(|kZ-t|)dt + ^ xj (1) 

0 
(2j-3)H 

HQ (|kz-t|)dt = RHS(kz), z>0, (1.11) 

where kL = (2N-1)H and N = 200. The corresponding expression for the all-

pulse basis function set is obtained by replacing the t 2 under the inte-

gral sign by unity and the x^ by xP. The moment method solution is 

obtained by requiring Equation (1.11) to hold at kz = 2(i-l)H for 

i = 1,2,**',N (point matching). This results in N equations in N unknowns 

which may be written in matrix form as 

Arxr = y; (1.12) 

for the hybrid expansion and as 

A P x P = d ' 1 3 ) 

for the all-pulse expansion. Ar and AP are almost-Toeplitz matrices of 

integrals of the kernel weighted with respect to the basis functions. The 



60 

Toeplitz matrix is a matrix with all of the elements in any diagonal equal. 

Ar and A^ are 

Ar = 

"N "N-l 

"N-l 
and A = 

Pi 
P2 tx 

PN fcN-l 

"N 

"N-l 
(1.14) 

These would be Toeplitz matrices except for the fact that the first column 

is different. The individual matrix elements are 

H 
r. J t 2 (| D -t I) dt, (1.15) 

H 

P3 = H ^ d D . - t D d t , (1.16) 

and H 
t. = J H ^ d D . - t b d t 

-H 
(1.17) 

where H is the subsection half-width and D^ = 2(j-l)H for j = 1,2,*'»,N. 

is a vector of the right-hand side evaluated at these points. Matrix 

element approximations are discussed in the next section. The evaluation 

of the right-hand side is discussed in Section 4.3. A treatment of the 

almost-Toeplitz matrix is given in Section 4.4. Finally, Section 4.5 dis-

cusses the results of the calculations. Complete listings of the computer 

programs referred to in the following are given in Appendix D. 
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4.2 Matrix Element Approximations 

Matrix elements must be calculated as accurately as possible in order 

to have the moment method results turn out reasonably accurate. This sec-

tion describes the method of calculating the matrix elements. Matrix 

element approximations for pulse expansion functions are examined in the 

next section and those for inverse square root expansion functions are de-

tailed in Section 4.2.2. 

4.2.1 Matrix Element Approximations for Pulse Basis Functions 

Matrix elements for the edge pulse expansion function may be written 

in the form 
H 
H ^ d D -t|)dt, j « 1,2, •• • ,N, (2.1) 

0 

and those for expansion functions away from the edge may be written in the 

form 
H 

t. = J H^1}(|D -t|)dt, j = 1,2,•••,N, (2.2) 
-H 

where N is the number of subsections, H is the subsection half-width, and 

Dj = 2(j-l)H. For D = D^ = 0, the integrals become 

P1 = 

H H H 
(1) H^1)(t)dt and t = Hq (111)dt = 2 H^1}(t)dt. (2.3) 

0 - H O 

These matrix elements are called the self terms. All other matrix elements 

are called mutual terms. Integrals like (2.3) may be approximated in terms 

of Chebyshev polynomial series by 
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x 
J0(t)dt = I a n T2n+1(x/8), - 8 < x < 8 , (2.4) 

0 n = 0 

and 
x 
YQ(t)dt = (2/TT) [ Y + £n(x/2) ] JQ(t)dt - I b n T2n+1(x/8), (2.5) 

n=0 

0 < x < 8, 

where v = 0.57721 56649 ... is Euler's constant. The coefficients a and n 
t>n are given by Luke (1969, Volume II, Table 27, p. 334). The specific 

range of validity of these equations is dictated by the available coeffi-

cients. The use of a Chebyshev series minimizes the maximum error over the 
N 

interval of approximation. That is, if G(x) = £ a T (x) is a proper 
A N N n=0 

Chebyshev approximation to f(x), then 

max If(x) - G(x)| 
-1<X<1 

will be minimized over the set of all polynomials of degree N or less. If 

a sufficient number of terms are included in (2.4) and (2.5), these inte-

grals may be evaluated to any desired accuracy. Various self term approx-

imations are derived and compared to the above in Appendix B. 

For Dj ^ 0, the mutual terms may be written as 

H b 
H<1)(Dj-t)dt = 

-H 
H^1}(t)dt (2.6) 

where a = D.-H and b = D.+H. The mutual terms are evaluated by using either 3 J 
the Chebyshev series in (2.4) and (2.5) or the Chebyshev series 

' O TH^(t)dt= ( ^ f e 1 ( x + i r / 4 ) I cnT*(5/x), x > 5 , (2.7) 
n=0 x 
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where Tn is the shifted Chebyshev polynomial of the first kind given by 

T*(x) = Tn(2x-1). The complex coefficients c n are given by Luke (1969, 

Volume II, Table 27, p. 335). The Chebyshev series of (2.4), (2.5), and 

(2.7) are truncated after about 18 terms. This gives full double pre-

cision (15 digit) accuracy. The mutual terms are evaluated using either 

(2.4) and (2.5) or (2.7) in either 

H^1}(t)dt = H q ^ (t)dt - H^1}(t)dt (2.8) 

or 

H^1}(t)dt H^1}(t)dt H^1)(t)dt, (2.9) 

respectively. Careful study of the results indicates that for b = a+0.1 

approximately two digits of accuracy are lost in taking the difference. 

Another way of saying this is that for b = a+0.1 the first two digits of 

each of the integrals on the right-hand sides of (2.8) and (2.9) are 

approximately the same. This allows about 12 or 13 decimal places of 

accuracy for each pulse basis function mutual term matrix element computed 

in this way in double precision. Various numerical approximations for the 

mutual terms are compared in Appendix B. 

4.2.2 Matrix Elements Associated with the Inverse Square Root Basis 

Function 

Matrix elements associated with the t 2 edge expansion function may 

be written in the form 
H 

r. J t 2 H ^ d D . - t b d t . (2.10) 
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The self term is the value for D = D^ = 0 and the mutual terms are the 

values for D. > 0 . 
J 

The self term takes the form 
H 

rl = t 2 H^1}(t)dt. (2.11) 

This integral may be written in terms of series of Chebyshev polynomials 

as 

0 
t 2 JQ(t)dt = /x I anT2n(x) 

n=0 
0 < x < 1, (2.12) 

and 
x x 
t 2 YQ(t)dt = - [y + £n(x/2)] 

0 
t 2 JQ(t)dt + v^ I bnT2n(x), 

n=0 
(2.13) 

0 < x < 1. 

The coefficients a^ and b^ are given to thirty decimal places in Appendix C 

along with a discussion of their computation. Various numerical approxi-

mations to this self term are given in Appendix B. 

The mutual terms for the edge expansion function may be written in the 

form 
H 

r. = J t 2 H^1)(D.-t)dt. 0 .1 
(2.14) 

, ( D Expanding H^ i n a ser:i-es products of Bessel and Hankel functions 

according to Neumann's difference theorem for Bessel functions 

o o 

H ^ D - t ) = I H,A)(D)J, (t), |D| > |t|, (2.15) 
k=-°° 
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as given by Olver (1964, p. 363) and integrating with respect to t 2, one 

obtains 
H 
t 2 H(^1)(D-t)dt = I e . H ^ D ) Ji_i .(H) 

k=0 k k r, (2.16) 

where 

Ek = 

1 k = 0 

2 k > 0 
(2.17) 

and 
H 

Ji (H) = tM J (t)dt, y, v J v 
0 

(2.18) 

as given by Luke (1962, p. 42). This same result may also be obtained by 

expanding H^^ (D-t) in a Taylor series. For a particular formulation, H 

is fixed and so the Ji's need to be computed only once. D, on the other 

hand, varies and so the H^^'s need to be computed for many points. This 

does not present any problem because the H^^'s are very easily and 

quickly computed using special algorithms. The J^'s are computed using 

the algorithm of Blanch (1964) and the Y^'s are computed directly from the 

recurrence relation. A brief description of Blanch's method is given in 

Section 4.3.2. 

The Ji 2_ a r e computed using a power series given by Luke (1962, 

p. 44). The series is 

Ji - 1c (z) = /z 
CI) 

2n 
( - ) n ( f ) 

k ! n=0 n! (k+1) (2n+k+§) 
(2.19) 

This function is computed economically using the relations 
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(k+1) = (k+n)(k+1) (2.20) n ii—1 

k! = (k)(k-1)!, (2.21) 

a n d k k-1 z = (z)z . (2.22) 

These relations are used to generate the next term in the power series 

from the present one and also to generate Ji i , , (z) from Ji i . (z). 

Since H is usually much less than one, the power series (2.19) is rapidly 

convergent. 

The series (2.16) for the matrix elements is computed to an accuracy 

of at least ten decimal places with 32 terms. Various numerical approxi-

mations for the mutual terms due to the t 2 expansion function are compared 

in Appendix B. 

4.3 The Right-Hand Side 

The right-hand side of the integral equation under study here is 

given in (1.8) and is 

„TT„ 2 . . -ikz cost RHS = — sine e 
zo 

With the help of the identity 

it COS0 „(1)/4.v j4. . r, /o in e HQ (t)dt, z > 0. (3.1) 
kz 

it cos0 TT(1) . 2 0 n ~ /o o\ 
o ( t ) d t = ' ( 3- 2 ) 

0 

Equation (3.1) becomes 

RHS - e"lkz C O S 0 - i- sine e"ikz C O S 0 

0 0 

kz 
eit cose H(l) ( t ) d t (3.3) 

0 
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for z > 0. An infinite series representation for the last integral in 

(3.3) is given by Luke (1962, pp. 239-240). One part of this representa-

tion is 

x 
oo it cosQ , , . . „ ix cos6 v / . T T , ., T , x /x e JQ(t)dt = 2e I (-1) Uk(cos6) \ + 1 ( x ) (3.4) 

0 k = 0 

where 

U ( c o s 0 ) = s i n g l e 
k sinO 

is the Chebyshev polynomial of the second kind and -^(x) is the Bessel 
\ function of the first kind and order k. The other part of this representa-

tion is 
x x 

it cos6 „ , N , 2 r . „ / t e Y (t)dt = - [y + £n(x/2)] it cos6 , . . , e JQ(t)dt 
0 

4 e i x c o s 0 l (_i)k u ( c o s 6 ) s,(x) (3.6) 
k=0 k k 

where 

/ ,„*k+1 00 , . m, /0,2m 
Sk(x) - I <-> ( x / 2 ) - h m + k + 1. (3.7) 
R (k+1)! m=0 m! (k+2) m k 1 

m 
k 1 In (3.7), hQ = 0, hk = ip (k+1) - iKl) = ^ i|»(l) = - y, (z)fc is Poch-
r=l 

hammer's symbol and ip is the psi function. The use of "S" to represent 

this function is not standard, but is used to simplify (3.6). 
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4.3.1 Computation of the U^'s 

Values of higher order Chebyshev polynomials may be calculated from 

the recurrence relation 

U (x) = 2x U (x) - U (x) (3.8) n+l n n-l 

using the initial terms 

UQ(X) = 1 (3.9) 

and Ux(x) = 2x. (3.10) 

This relation is given by Luke (1969, Volume I, p. 297). The use of this 

relation is desirable because it is faster to evaluate an array of U^'s 

in this manner than it is to evaluate them using (3.5). Equation (3.8) 

proves to be reasonably stable in the forward direction. Values for U^q 

generated by this method are accurate to about 10 decimal places. 

4.3.2 Computation of the J^'s 

The method of Blanch (1964) for the computation of the J^'s is based 

on the basic recurrence relation for Bessel's functions of the first kind 

G fx) - T- (3.11) 
" f - w * > 

where 

J (x) = G (x) J . (x). (3.12) n n n-l 

t h The k continuation of (3.11) yields the continued fraction expansion 
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G (x) = 1 1 (3.13) n 2n _ 2n+2 _ _ 2n+2k , , 
x x x n+k+1 

Since the forward use of the recurrence relation (3.11) for n > x results 

in severe accuracy loss, the continued fraction method is used in the 

backward direction as follows: G (x) is evaluated using (3.13) with nmax 
k = 15 or more and = 0* ^he other G^(x) are computed from (3.11) 

for n = nmax-1, nmax-2,•••,2. Finally, the Bessel functions JR(X) a r e 

evaluated from (3.12) for n =2,3,•••,nmax using 1Q(x) and J^(x) which have 

been computed with Chebyshev polynomials. Blanch gives an algorithm for 

carrying out these manipulations with minimal accuracy loss. Her algorithm 

is used because Hart et al. (1968, p. 146) say, "her discussion should be 

consulted by those requiring an algorithm for computing Bessel functions of 

the first kind to maximum accuracy." 

4.3.3 The Computation of the S^'s 

The Sk(x) functions of (3.7) are computed economically by using the 

relations 

(k+2) = (k+l+m)(k+2) ,, (3.14) m m-1 

m! = m(m-l)!, (3.15) 

h xi xi " h xi + ZZriT" ' (3.16) m+k+1 m+k m+k+1 

and (z)m = z(z)m"1. (3.17) 

The relations are used to generate the next term in the power series from 

the present one and also to generate S^+^(x) from S^(x). 
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4.3.4 Final Remarks on RHS 

For the case 0 = 90°, (3.1) reduces to 

RHS = H^1}(t)dt (3.18) 
kz 

which is written in series of Chebyshev polynomials in Equations (2.4), 

(2.5), and (2.7). Table 4.1 gives the accuracy of the approximations (3.4) 

and (3.6) for 8 = 90° using the Chebyshev polynomial expansions for (3.18) 

as the standard. The term "Digits of Accuracy" is explained in Appendix A. 

This table shows that the real part of RHS is very accurate, but that the 

accuracy of the imaginary part decreases rapidly with increasing argument. 

The rapid deterioration of accuracy for the right-hand side for arguments 

greater than 20 requires that the limits of integration of the integral 

equation (1.9) be set at 20 or less. Graphs of RHS for 0 = 45°, 90°, 135°, 

and 180° and for arguments between zero and twenty are shown in Figure 4.2. 

4.4 The Efficient Inversion of the Almost-Toeplitz Matrix 

Throughout this section, the notation 

x = 

x. 

xn 

N 

(4.1) 

is used to represent a column vector x and its elements. An efficient 

algorithm for the inversion of Toeplitz matrices has been developed by 
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Table 4.10 

Digits of Accuracy for RHS by Double Precision Evaluation 
of Equations (3.4) and (3.6) 

Digits of accuracy 

x Real Part Imag. Part 

5.0 15.0 14.1 

10.0 15.1 12.1 

20.0 14.6 7.6 

30.0 13.3 3.4 

40.0 13.5 0.9 

Notes: 1. 16 digit accuracy possible. 
2. All summations truncated after 85 terms. 
3. For x greater than 40, the imaginary part becomes very large. 
4. RHS is given by Equation (3.3). 
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Preis (1972). An earlier discussion of Toeplitz matrix inversion is given 

by Bareiss (1969). The matrix equations (1.12) and (1.13) may be written 

as 

(T + L)x = x (4.2) 

where, in the notation of Section 4.1.3, T is the Toeplitz matrix 

tx t2 

t2 h 

N 

N-l 

t t • • • t N N-l 1 

(4.3) 

and L is the matrix 

L = £ 0 0 (4.4) 

with 

I = 

zi " h 

Z 2 - c 2 

ZN " h 

and 0 = (4.5) 

Here z^ is either r^ or p^. These are given by (1.15) and (1.16), respec-

tively. t± is given by (1.17). Multiplying (4.2) by T 1, the inverse of 

T, one obtains 
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(I + M)x = c (4.6) 

where I is the identity matrix, M is the matrix 

M m 0 0 (4.7) 

with 
m = T 1 I , (4.8) 

and c is the vector 

£ = T 1 2. (4.9) 

Solving (4.6) for x obtains 

m.c, l 1 x. = c. - — x x 1+m, (4.10) 

After m and ĉ  are obtained using the efficient Toeplitz matrix inversion 

routine, the solution vector x is readily obtained from (4.10). 

4.5 The Results 

The integral equation (1.9) for the E-polarization half-plane current 

{l„ - L j ( z ' ) is solved here by the method of moments using the almost-h r U 
Toeplitz matrix inversion algorithm. Two expansion function sets are used. 

Results due to a hybrid expansion function set are compared with results 

due to an all-pulse expansion function set. The expansion function sets 

are described in Section 4.1.3. The standard approximation to which both 

will be compared is obtained by subtracting (1.5) from Equation (3.3) of 

Chapter 3. After careful study of this standard, the subsection half-width 
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H is chosen to be 

H = 0.05. 

This is small enough that 

y/ti JR 

so that the edge expansion function closely approximates the actual current 

over its range of applicability. The diminishing accuracy of the imaginary 

part of (3.3) for arguments greater than 20 requires the upper limit of 

integration to be about 20. For a total of 200 subsections, this upper 

limit becomes 19.95. A total of 200 subsections are used for both the 

hybrid and the all-pulse expansion function sets. For each of these sets, 

computations are carried out for the four angles of incidence 0 = 45°, 90°, 

135°, and 180°. 

4.5.1 Accuracy of the Moment Method Results 

The solution vectors for the hybrid expansion are plotted on top of 

the standard in Figures 4.3 through 4.6 for the angles of incidence 0 = 45°, 

90°, 135°, and 180°, respectively. The standard is computed using the 

Chebyshev polynomial expansion for the Fresnel integral given by Luke (1969, 

Volume II, Table 24, pp. 328-329). Agreement between the hybrid expansion 

moment method solution and the standard is generally excellent. Diffi-

culties do occur, however, around kz = 20 at least to some degree for all 

angles of incidence. Comparison of results for truncation points of 15 and 

20 shows that the same behavior is exhibited around 15 for the former case 

as is exhibited around 20 for the latter. Therefore, it seems valid to say 

(5.1) 

(5.2) 
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that the inaccuracies around 20 in these figures are due to the truncation 

of the integral at 20. The results for the all-pulse expansion function 

set away from the edge are similar to those for the hybrid expansion. The 

hybrid expansion is much better than the all-pulse expansion for points 

close to the edge. Figures 4.7 and 4.8 emphasize the behavior of the two 

approximations near the edge for 6 = 45° and 180°, respectively. For both 

angles of incidence, the solution vector for the hybrid expansion is a 

better approximation to the standard than that for the all-pulse expansion. 

It is obvious that the inverse square root expansion function is a better 

approximation to the standard than is the edge pulse expansion function. 

It is not clear whether the height of this edge pulse has any significance. 

Relations between the all-pulse expansion solution and the hybrid expan-

sion solution for the first two elements are derived in Section 4.5.2. 

The explicit edge behavior of the solutions are compared to the stan-

dard in Figures 4.9 and 4.10 for 0 = 45° and 180°, respectively. For 

0 = 45° the agreement of the hybrid expansion solution with the standard 

is acceptable. For 0 = 180° it is excellent. This is because for 0 = 180° 

the Fresnel integral term in (3.3) of Chapter 3 drops out. Table 4.2 gives 

the accuracy of the edge coefficients for all four angles of incidence. 

The accuracy of the real part for 0 =45° is quite low because, as Figure 

4.9 shows, the moment method attempts to fit the standard over the sub-

section width in some average sense. The low accuracy is also due to the 

fact that the standard is computed at the edge, while the numerical solu-

tion is some type of fit over the subsection width. This makes meaningful 

comparisons difficult, but this table does show relevant trends in the 

accuracy of the fit. 
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Table 4.10 

Accuracy of the Inverse Square Root Expansion Function 
Coefficient 

Digits of Accuracy Decimal Offset Factor 

Real Imag. Real Imag. 

45° 0.7 2.1 0.4 0.4 

90° 0.8 2.4 0.1 0.1 

135° 1.0 1.8 -0.02 -0.02 

180° 2.3 1.6 -0.05 -0.05 

Notes: 1. Standard is computed at the edge and is 
) 

9 • 9 

2 sin — 
(1 + i) . Z0 

2. Subsection half-width H is 0.05. 
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The relative accuracies of the moment method solutions are compared to 

the standard for the hybrid expansion and for the all-pulse expansion in 

Tables 4.3 and 4.4, respectively. Numbers for the case of normal incidence 

are shown, but similar numerical trends appear for the other angles of inci-

dence as well. The relative error is found at each match point except the 

first by comparing the moment method solution with the standard evaluated 

at the subsection midpoint. At some points the error is found to be very 

large. With the standard very small and the moment method solution several 

orders of magnitude larger, but still near zero, the relative error is 

quite large. This often occurs around zero crossing points because the 

moment method does not give answers as cldse to zero as the standard does. 

The average relative error is computed excluding errors greater than 15% 

for the top half of each table and excluding errors greater than 1% for 

the bottom half. The 15% and 1% figures correspond to 0.8 digits and 2.0 

digits of accuracy, respectively. The term "Digits of Accuracy" is ex-

plained in Appendix A. With proper exclusions, the average relative error 

over each range given is found and the digits of accuracy figure given is 

-Aog-^Q of this. Also given (preceded by a slash) is the total number of 

points included in taking the average. Four ranges of subsections for 

averaging are used. The accuracy of the moment method solution in the 

neighborhood of the edge is checked over subsections 2 through 6. Figures 

are also given for subsection ranges 2 through 150, 151 through 200, and 

2 through 200. These figures show the effect of truncation of the infinite 

integral. Over the range 151 through 200, the accuracy of the hybrid ex-

pansion solution and that of the all-pulse expansion solution are very 
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Table 4.3 

Average Digits of Accuracy for the Hybrid Expansion 
Solution Over Several Ranges 

Range of 
subsections Total 
for averaging S.S. Real Imag. Mag. Phase 

Data with less than 0.8 digits of accuracy 
excluded in average 

2 - 6 
/5 

1.2 
/3 

1.9 
/5 

2.1 
/ 5 

1.8 
/ 5 

2 - 150 
/149 

2.3 
/145 

2.1 
/148 

2.6 
/149 

2.4 
/149 

151 - 200 
/50 

1.4 
/ 46 

1.6 
/ 42 

1.6 
/ 49 

1.7 
/ 45 

2 - 200 
/199 

1.8 
/191 

1.9 
/190 

2.1 
/198 

2.1 
/194 

Data with less than 2.0 digits of accuracy 
excluded in average 

2 - 6 
/5 /o 

2.3 
/ 3 

2.6 
/ 3 

2.2 
/ 3 

2 - 150 
/149 

2.7 
/130 

2.4 
/118 

2.6 
/147 

2.7 
/138 

151 - 200 
/ 50 

2.2 
/23 

2.3 
/15 

2.3 
/25 

2.3 
/ 21 

2 - 200 
/199 

2.6 
/153 

2.4 
/133 

2.6 
/172 

2.6 
/159 

Notes: 1. 0 = 90°, H = 0.05. 
2. The number preceded by a slash is the number of conforming data 

points included in the average. 
3. The digits of accuracy figure used here is -log^Q (average 

relative error). 
4. 3 digits = 0.1%, 2 digits = 1%; 1 digit = 10%. 
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Table 4.4 

Average Digits of Accuracy for the All-Pulse Expansion 
Solution Over Several Ranges 

Range of 
subsections Total 
for averaging S.S. Real Imag. Mag. Phase 

Data with less than 0.8 digits of accuracy 
excluded in average 

2 - 6 
/5 

1.0 
/ 2 

1.1 
/ 4 

1.2 
/ 4 

1.5 
/ 4 

2 - 150 
/149 

1.5 
/134 

1.5 
/135 

2.2 
/148 

1.7 
/143 

151 - 200 
/50 

1.4 
/ 47 

1.4 
/ 40 

1.6 
/49 

1.5 
/ 43 

2 - 200 
/199 

1.5 
/181 

1.4 
/175 

1.9 
/197 

1.6 
/186 

Data with less than 2.0 digits of accuracy 
excluded in average 

2 - 6 
/5 /o /o /o /o 

2 - 150 
/149 

2.3 
/40 

2.3 
/33 

2.6 
/130 

2.1 
/ 45 

151 - 200 
/50 

2.3 
/9 

2.3 
/10 

2.3 
/26 

2.3 
/ 8 

2 - 200 
/199 

2.3 
/ 49 

2.3 
/ 43 

2.5 
/156 

2.1 
/ 53 

Notes: 1. 0 = 90°, H = 0.05. 
2. The number preceded by a slash is the number of conforming data 

points included in the average. 
3. The digits of accuracy figure used here is -log^Q (average 

relative error) 
4. 3 digits = 0.1%; 2 digits = 1%; 1 digit = 10%. 
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close to each other, while over the range 2 through 150 they are somewhat 

different. This seems to indicate that truncation most seriously limits 

the accuracy of those elements in its vicinity and allows us to say that 

the truncation has negligible effect over subsections 2 through 150. 

Comparison of the results over the range 2 through 150 shows that 

the answers for the hybrid expansion are much better than those for the 

all-pulse expansion. Consider the bottom portion of each table where 

accuracies of less than two digits are excluded in the average. Although 

the figures for digits of accuracy appear to be comparable, the true story 

is told by the number of terms included in the respective averages. For 

the hybrid expansion, 130, 118, 147, and 138 points are included out of a 

possible total in each case of 149 while for the all-pulse expansion, only 

40, 33, 130, and 45 points are included for the real part, imaginary part, 

magnitude and phase, respectively. Note that the magnitude of the all-pulse 

expansion is accurate to nearly the same degree as is that of the hybrid 

expansion. Inaccuracies in the phase for the all-pulse expansion seems 

to spoil it. 

The accuracy of the hybrid expansion is much better in the vicinity 

of the edge than is the all-pulse expansion as the numbers for the range 

2 through 6 show. This is consistent with conclusions drawn from visual 

study of Figures 4.7 and 4.8. 

4.5.2 The Relation Between the Hybrid Expansion Solution and the All-Pulse 

Expansion Solution 

It is often asked, "What is the significance of the value of the solu-

tion for the edge pulse in the all-pulse expansion and how does it relate 
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to the value for the hybrid expansion?" The answer to this question is 

discussed here. 

The matrix equation for the hybrid expansion is 

Ar r A x = 

and that for the all-pulse expansion is 

APxP = x-

(5.3) 

(5.4) 

Ar and AP are the matrices given by (1.14). xr and xP are the solution 

vectors for each expansion and is the right-hand side common to both 

equations. Subtracting (5.3) from (5.4), one obtains 

A V = APxP * (5.5) 

or (R + T )xr = (P + T )xP Li L (5.6) 

where R = 

P = 

r 0 0 

£ 0. £ * " o. 

(5.7) 

(5.8) 

and 

T = T -
LJ t o o (5.9) 

Here T is the Toeplitz matrix of (4.3) and _t is the first column of this 
r p 

matrix. r_ and JD correspond to the first column of A and A as given by 

(1.14), respectively. After multiplying by T ^ and simplifying, Equation 

(5.6) becomes 

(T XR + I. )xr = (T 1P + T ) xP 
Li i-i (5.10) 
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where I is the identity matrix I except that the first element in the Lt 
r first row is zero instead of one. Solving for x yields 

r ^ > 1 P 

X L = ( T S ) , X l 
(5.11) 

and 

xr = xP + (T 1£), " 
(T V 

J (T Xr). 
(T 1r)j V j > 1. (5.12) 

^ ^ 
Here the notation (T w) represents the n element in the column vector — n 

T-1w. * 

If (T ^p)^, (T and a r e known, then the first element in the 

hybrid expansion solution, x^, may be found from (5.11). Similarly, the 

rest of the elements in the hybrid expansion solution may be found from the 

elements of the all-pulse expansion solution by using (5.12). 

Figure 4.11 gives plots of the results near the edge for 0 = 135°. 

Identical plots, except for 0 = 45° and 180°, are given in Figures 4.9 and 

4.10. It is interesting to note that all three curves cross at about the 

same point in these figures. It is not known if there is some simple ex-

planation for this. The crossing point in these figures is located at about 

/H/8 where H is the width of the edge subsection and is 0.05 in this case. 

This makes 

x^ « v ^ xP. (5.13) 

Hypothesizing that this relation holds for all H and experimenting with 

subsection size gives the results presented in Table 4.5. The accuracy of 
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the coefficient for the inverse square root edge expansion function is 

pulse expansion. For values of H of 0.05, 0.1, and 0.4, the relative 

error in making the approximation of (5.13) is about 1%, 3%, and 10%, 

respectively. For many purposes, and especially for small subsection 

size, use of (5.13) proves to be an adequate approximation to (5.11). 

Study of the numerical results and of Figures 4.7 and 4.8 indicates 

that a correction to the all-pulse solution for the second subsection may 

also be necessary, but that a correction is probably not needed for the 

other subsections. Explicitly writing (5.12) for the second subsection 

gives * 

Hypothesizing that each of the terms in the bracket are simple functions 

of H, the subsection half-width, results in the empirical formulas 

compared with /h78 times the coefficient of the edge pulse in the all-

x^ = xP + (T Lp)2 
P 
'2 (5.14) 

H 
TT p ( 1 - i[H/3] ), 
a 

(5.15) 

(5.16) 

(T 1£) 1 = (5 TV -1+/6/tt H2)/10tt - i(u/13)2H [ 1-tt(tt/13)2H2], (5.17) 

and 

(T X£)2 = ^ [1+CL.36H)2] -i 1 4/RR 2 ^ r ^ H f 1- (1. 8H) ]. (5.18) 
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These are obtained using standard curve fitting techniques applied at two 

points. The equations are written using constants and operations that are 

readily available on an HP-45 calculator. When the actual numbers are 

used, values computed at other points often match to 6 digits. Much better 

curve fits could certainly be given using six digit numerical values in-

stead of the simple values given above. 

The accuracies of the empirical formulas are compared to the actual 

numerical values in Tables 4.6 through 4.9 for four values of H. As these 

tables show, the agreement is very good. 

The form of Equations (5.15) through (5.18) is not completely sur-

prising. Study of the first row of T £hows that Im(T "S-jj is roughly 

proportional to r̂. The results of Appendix B show that the elements of _r 

and £ a r e proportional to /h and H, respectively, at least in some approx-
-1 -i 

imate sense. This makes the elements of T r proportional to H 2 and those 

of T ^p to 1. That (T is close to 0.5 might be guessed by remember-

ing that the range of integration for the elements of £ is H while that of 

t is 2H. Since (T = 1, it makes sense that (T 1£)1 - 0.5. 

Substituting the empirical formulas in (5.11) and (5.14) gives 

x* = q-, (H) x1 P 1 (5.19) 

and 

r P , 1 
x „ = x„ + q9 (H) x: P 1 (5.20) 

where 

q x(H) = 
( 5TT -l+/6h H 2)/10 T T - i ( T R / 1 3 ) 2 H [ l - I R ( T T / 1 3 ) 2 H 2 ] R § 

7T^(l-i[H/3]) 
(5.21) 
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Table 4.9 

Comparison of the Empirical Formula for (T ̂ jd) 
with Numerical Results 

Number of matching Number of matching 
Numerical value decimal places digits 

H of (T~1r)1 Real Imag. Real Imag. 

18.8263 
0.005 2.8 2.8 4.1 1.4 

-iO.0328 

5.9527 
0.05 2.9 3.7 3.7 2.7 

-iO.0990 

4.2091 
0.1 3.0 3.6 3.6 2.7 

-iO.1401 

2.1033 
0.4 2.8 3.5 3.1 2.9 

-iO.2810 

-1 TT1/4 Empirical formula: (T r). = (1 - i[H/3]) 
H 

Notes: 1. The numerical value is used as the standard for the calculation 
of matching digits. 

2. These numbers are approximately independent of matrix order for 
orders greater than ten. 
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Table 4.9 

Comparison of the Empirical Formula for (T ̂ jd) 
with Numerical Results 

Numerical value 
Number of matching 
decimal places 

Number of matching 
digits 

H of (T_1r)2 Real Imag. Real Imag. 

0. 005 
-2.1725 

-iO.0141 
2.8 4.8 3.2 3.0 

0. 05 
-0.6853 

-iO.0421 
3.1 2.7 3.0 1.3 

0. 1 
-0.4804 

-iO.0593 
2.8 2.5 2.5 1.3 

-0.2009 
0.4 2.0 1.9 1.3 0.9 

-iO.1068 

n x 3 1 7 V 7 4 i /573 H Empxrxcal formula: (T r)„ = -. e 
15 H ' 

Notes: 1. The numerical value is used as the standard for the calculation 
of matching digits. 

2. These numbers are approximately independent of matrix order for 
orders greater than ten. 
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Table 4.8 

Comparison of the Empirical Formula for (T 
with Numerical Results 

H 
Numerical value 

Of ( T _ 1 £ ) 1 

Number of matching 
decimal places 

Real Imag. 

Number of matching 
digits 

Real 

_ i 2 
Empirical formula: (T = (5* - l + /6/TT H )/10T 

- i(^)2H[l - t t ^ V ] 

Imag. 

0.005 
0.468196 

-iO.000305 
4.6 4.9 4.3 1.4 

0.05 
0.468283 

-iO.002916 
5.3 5.6 5.0 3.1 

0.1 
0.468606 

-iO.005825 
5.6 5.3 

» 
5.3 3.1 

0.4 
0.475197 

-iO.022651 
5.0 4.6 4.6 3.0 

Notes: 1. The numerical value is used as the standard for the calculation 
of matching digits. 

2. These numbers are approximately independent of matrix order for 
orders greater than ten. 

I 
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Table 4.9 

Comparison of the Empirical Formula for (T ̂ jd) 
with Numerical Results 

Numerical value 
Number of matching 

decimal places 
Number of matching 

digits 

H of (T~1
E)2 Real Imag. Real Imag. 

0. 005 
0.050147 

-iO.000131 
4.9 5.2 3.6 1.3 

0. 05 
0.050370 

-iO.001232 
5.3 5.8 4.0 2.8 

0. 1 
0.051065 

-iO.002404 
5.3 5.6 

\ 

4.0 3.0 

0.064024 
0.4 3.0 4.9 1.8 2.6 

-iO.004793 

Empirical formula: (T 1£>2 = ̂  [1 + (1.36H)2] - i i ^ 1 H[1 - (1.8H)2] 

Notes: 1. The numerical value is used as the standard for the calculation 
of matching digits. 

2. These numbers are approximately independent of matrix order for 
orders greater than ten. 
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and 

q2(H) ^ [1+(1.36H)2] - i [1-(1.8H)2] 100 100 

+ q1(H) 
i /5]3 H 

5 6 
15 H 2 

(5.22) 

x v p Table 4.10 compares the numerical results for x^ and x^ with q^(H)x^ and 
X2 + respectively. Comparisons are given for four subsection 

sizes. The error is generally less than 1% and in some cases is less than 

0.1%. For most purposes, these formulas give answers that are more accu-

rate than they need to be in light of the fact that the error introduced 

in using the moment method is often quite large. 

The empirical formulas (5.15) through (5.18) are also useful for 

obtaining x^, x^, xP, and xP from x^ and x^. x*" is the solution of 

T x = (5.23) 

-1 where T is the Toeplitz matrix in (4.3). Using the facts that (T t) ̂  = 1 

and (T X_t)2 = 0, it may be shown that 

x* = xJ/(T 1r)1, (5.24) 

X1 = ^ ^ 

and 

x2 = x^ - [(T 1r)2/(T 1r)1] x*, 

xP = - [(T 1£)2/(T 4 ' 

(5.25) 

(5.26) 

(5.27) 

Although these formulas look simpler than those relating x and x , the 

accuracy of the solution is less than that of xP which is less than that 
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Table 4.10 

Comparison of the Values of the First Two Elements in 
the Solution Vector for the Hybrid Expansion with the 
Values Obtained Using the Corresponding Elements for 
the All-Pulse Expansion and the Empirical Formulas 

Number of matching digits 

r 
X1 compared to x2 compared to 

ql (H)xJ XP 
2 + q2(H)x

P 

H Real Imag. Real Imag. 

0.005 1.8 1.9 2.4 2.5 

0.05 3.6 3.7 3.0 3.1 

0.1 3.6 3.7 2.5 2.7 

0.4 3.6 3.0 2.3 1.5 

Notes: 1. 0 = 135° for comparisons, but result does not depend on 
r r 

2. The numerical values of x^ and x2 are used as the standard 
for the calculation of matching digits. 
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x of x . For this reason, it is very desirable to use the almost-Toeplitz 

algorithm to obtain xP, at least, instead of the Toeplitz algorithm to 

obtain x1". If only is available, Table 4.11 gives the accuracy that 

would be obtained if (5.24) through (5.27) and the empirical formulas were 

used to modify the values of the first two elements. For the case given, 

the relative error is less than 0.1%. 

If the right-hand side of the matrix equation (5.23) is peaked around 

the first element, then approximations to x^ may be easily obtained. The 

right-hand side of the integral equation, given by (3.1), is such a func-

tion (see Figure 4.2). Table 4.12 gives the values of the first few 
-1 ' 

elements of T along with the number of matching digits for various orders 

of matrices. The inverse is clearly peaked around the first element and 

rapidly decreases away from this element. If the right-hand side also 

decreases away from the first element, then because of rapid convergence 

properties it is acceptable to use only a few terms to evaluate (T 

instead of the full number of terms. Reasonable answers for (T a r e 

obtained for a matrix of order ten, and surprisingly good answers are 

obtained for matrix orders between ten and three. 

Following the above argument, it can be seen that terms of the form 

(T or (T n» a s given in (5.11) and (5.12), are approximately in-

dependent of the order of the matrix T, at least for the first few elements 

(small n). It is this property that allows the empirical formulas (5.15) 

through (5.18) to be given as functions of H only. The empirical formulas 

are approximately independent of matrix order as long as the matrix order 

is ten or more and two or three digit accuracy is sufficient. 
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Table 4.10 

Comparison of the Values of the First Two Elements in 
the Hybrid and All-Pulse Expansion Solution Vectors 
with the Values Obtained Using the Corresponding 

Elements in the Toeplitz Solution Vector 

Number of matching digits 

Comparison Real Imag. 

x, 
(T 1r)1 

3.8 3.7 

x 1 * 4.0 4.6 

x2 -
(T Xr) 

(T_1r) 
2 t 
~ X 1 3.0 3.1 

x„ x2 -
(T 1£) 

(T_1£) 
2 t 
~ X1 3.4 4.3 

Notes: 1. H = 0.05 and 0 = 135° for all comparisons. The empirical 
formulas are used to compute all T-l_r and T - ^ terms. 
r x^ : hybrid solution 

x? : all-pulse solution 

x^ : Toeplitz solution 

r p 
3. The numerical values of x-̂  and x^ are used as the standard 

for calculation of matching digits. 
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4.6 Conclusion 

For the E-polarization, the CSF approach and the ordinary approach 

are virtually the same. In both cases, the same integral equation must 

be solved by the method of moments. A comparison of the moment method 

results for the induced current with the exact results shows that the 

moment method is reasonably accurate. It is also shown that the use of 

the hybrid expansion yields better accuracy than does the use of the all-

pulse expansion. For many purposes, however, the all-pulse expansion 

solution will suffice as long as the values of the first two elements are 

corrected using the empirical formulas. The complete computer program for 

the E-polarization half-plane problem is given in Appendix D. The results 

of this chapter are used in the next chapter to generate results for the 

H-polarization by using the current source-function technique. 
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5. THE NUMERICAL SOLUTION OF THE HALF-PLANE PROBLEM BY THE CURRENT 

The closed form solution of the half-plane problem with H-polarized 

incident field by the CSF technique is presented in Chapter 3. Numerical 

procedures for the application of the CSF technique to this same problem 

are described here. The numerical results for {1^ - IpQ} that are de-

scribed in the previous chapter are used to obtain numerical results for 

{IJJ - the H-polarization current minus the H-polarization physical 

optics current. Mayes (1972) and Prettie and Dudley (1974) have worked on 

the numerical solution of the problem of. scattering of a plane wave from a 

cylindrical rod using the CSF technique. Some unresolved questions about 

their results further motivated the present work on the half-plane problem 

which has been discussed elsewhere by Hanson and Mayes (1975). 

5.1 The Current Source-Function Technique Applied to the Half-Plane 

The configuration for the H-polarization half-plane problem with plane 

wave incidence is given in Figure 2.1(b). The CSF technique, as is de-

scribed previously, is a two step process. In the application to the half-

plane problem, the first step is to solve the integral equation 

SOURCE-FUNCTION TECHNIQUE: H-POLARIZATION 

Problem 

oo 

Fp uR(z') Hq"^ (k|z-z'|)dz' = y- sine e 
0 

-ikz cos0 z > 0, (1.1) 

for u (z'). The second step is to find the current IH from H H 
OO 

IH(z) = uH(z') g(z,z')dz' 
0 

H H —00 < z < (1.2) 
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In the numerical work at hand, the solution for {1^ - IpQ}> given in the 

last chapter, is used to find I . This is necessary because the moment r l 

method results for the difference {I„ - I ™ ) are available directly. h rU 

5.1.1 The Physical Optics Current for the H-polarization, 

The physical configuration of the H-polarization physical optics pro-

blem is just that given by Figure 2.1(b) except that the conductor extends 

to infinity in all directions. Although the CSF technique does not require 

that a solution be found in terms of {ITT - I }, this difference is used H po 

because it is of the same form as the solution {lE - I j q} for the E-

polarization is. Following steps similar to those outlined in Section 4.1.1 

for the E-polarization case, the H-polarization physical optics current be-

comes 

2 -ikz cosQ ,, 
I = -7T E • (1-3) po ZQ 

Lower case "po" is always used to indicate the H-polarization physical 

optics current while upper case "PO" is always used for the E-polarization. 

5.1.2 The Solution for u^, the Current Source-Function, in Terms of {l E-Ip Q} 

The rigorous solution for uu, the H-polarization current source-function, rl 
is given in Chapter 3. Recall that uu is a solution of the integral equation rl 

Fp u„(z') H ^ k l z - z ' D d z ' = sine e"ikz C O s 9, z > 0, (1.4) H O Z Q 

where u (z') satisfies the edge condition ri 
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3. 
uu(z') = 0( z! 2 ) as z' 0. (1.5) 

rl 

Also recall that the solution of this integral equation, given by (4.2) of 

Chapter 3, is made up of two parts. The first part is the one that repro-

duces the right-hand side. This part is simply the locally integrable 

solution to the integral equation and is 
sinQ v(z') = k 2 sine I®(z')l (z') = Ei + 

= k 2 sine {I® - Ip0}(z')l+(z') + k 2 sine I®Q(z')l+(z'). 

(1.6) 
2 6 

The second equality is obtained by adding and subtracting k sine 1PQ1+ i-n 

the first equality. 

The other part of the solution to the integral equation (1.4) is the 

part that does not violate the edge condition (1.5) and satisfies the 

homogeneous finite part integral equation 

Fp w(z') H^1)(k|z-z»|)dz' = 0 , z > 0. (1.7) 
0 

A solution to this homogeneous equation may be obtained by differentiating 

the integral equation [see Section 3.3.3] for I for normal incidence which, 

upon adding and subtracting IpQl+ in the unknown, becomes 

k 2 {ij - l£0} l+(z') + l+(z')j Hq^^(kj z-z1|)dz' = , 

z > 0, (1.8) 

where the superscript x indicates the quantity is evaluated for e = 90°. 

Differentiating both sides of this equation with respect to z and using 
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(4.12) of Chapter 2 gives 

{IE " + W ^ 2 ' ) |~r H^^kjz-z' |)dz' = 0, 3z 0 1 1 

z > 0, (1.9) 

Integrating by parts and utilizing the properties of the finite part 

yields 

{IE " + IXP0 f ^ H ^ ^ k l z - z ' h d z ' 

= -k2Ipo(0) H^^klzl) - k2Fp 
31. 

_ It-1- _ Ta } + —tl 
3z' E W 3z' HQ̂ "̂  (k| z-z' | )dz' 

= -k Fp 
3T 

_ pi- } + l^Zo 3z' E PO 9z' l+(z') + Ip0 6 ( z' )} H0 1 ) ( kl Z" Z'' ) d z' 

(1.10) 

Thus, 

w(z') = k Pf — {I1 - IX } 3z' E W l+(z') + k I p o <5(z') (1.11) 

since the 3Ipo/3z' term vanishes. This is a solution of (1.7) which sat-

isfies the edge condition. A complete solution of (1.4) is then 

uR(z) = A w(z) + sin0 v(z) 

k2A Pf ( fe (IXE - 4 0 > )l+(z) + k2A Ip06(z) 

+ k 2 sinQ {I® - I®0} l+(z) + k 2 sine IpQl+(z) (1.12) 

where A is a constant. 

It is interesting to note the behavior of uu as the argument approaches rl 
infinity. The first three terms in (1.12) vanish leaving 
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2 0 uu(z) ~ k sine I„„(z) as z •> «=. (1.13) 
ti rU 

This makes 

2 , 2 .2. -ikz cos0 ,.. 1 / s u = — k sin 6 e . (1.14) po ZQ 

Substituting the expression (1.3) for I in the equation for uR, 
d IH 2 uR = — 2 ~ + k IR, gives 
dz 

2 2k . 2n -ikz cos0 ,, u = sin 6 e . (1.15) po ZQ 

It is reassuring to obtain the same result in each of these two ways. 

The solution for u„ must satisfy the consistency condition in order 

to obtain a unique solution for I . From Equation (4.13) of Chapter 3, rl 
the consistency condition simply states that 

00 

uu(z') eikz'dz' = 0. (1.16) H 

Substituting the expression (1.12) in the above equation and solving for 

ikA gives 

4 2 i — cos (6/2) + k sin6 
ikA-

rT0 t6 , ikz {I - I } e dz 
0 . (1.17) 

i f + k 
Z0 

{Ix - Ix } elkzdz E PO 
0 

This is the value that must be used for A in (1.12). For normal incidence, 

ikA = 1. This agrees with (4.19) of Chapter 3. 
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5.1.3 The Solution for {l„ - I } in Terms of {l_ -rl po Ji rU 

The closed form solution for IT. is given by (5.14) in Chapter 3. H 
It is shown that 

y Z ) = uH(z') g(z,z')dz', — C O < z < (1.18) 

where 

g(z,z') = — 2ik 
Ik jz-z1I ik(z+z') (1.19) 

Substituting (1.12) into (1.18) yields 

IH = k A 

+ k2A IpQ(0) | 6(z 1) g(z,z')dz' + k2 sine {II - IpQ} g(z,z')dz' 

+ k 2 sine l£0 g(z,z')dz'. (1.20) 

By integrating by parts, the first integral above becomes 

Pf( {Ig " Ip0> )l+(z') g(z,z')dz' = -
0 (1.21) 

The second integral is zero since g(z,0) = 0. The third integral remains 

unchanged. The last integral becomes 

Ip0(z') g(z,z')dz' = 
ZQ sine k 

0 -ikz cos0 ikzN i -e J. (1.22) 
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after using (1.5) of Chapter 4. These equalities are valid for z > 0 

only. Equation (1.20) becomes 

1R - -k A { IE " IP0} Iz7" g<z'z'>dz' + k s i n 0 {1° - IpQ} g(z,z')dz' 

2 r -ikz cos8 ikzN + — (e -e J 
L0 

(1.23) 

The first part of the third term in this equation is just Ipo« Taking 

this term to the other side of the equation and letting h(z,z') = 
9_ - g(z,z') gives 

{I. H 1° } = po -k2A <4 IpQ} h(z,z')dz' + k sine e U ; - IpQ} g(z,z')dz' 

2 ikz 
Z~ 6 ! 
A0 

(1.24) 

where A is the constant given by (1.17). Each of the integrals on the 

right-hand side of (1.24) is approximated using the numerical results of 

Chapter 4 for {l£ - IpQ} weighted with either h(z,z') or g(z,z'). These 

numerical integrations are detailed in the next section. 

5.2 The Numerical Evaluation of {l„ - I } H po 

The moment method numerical results of Chapter 4 for {Ig - IpQ} are 

used here to obtain the numerical results for {I - I } by applying 
rl p O 

(1.24). Two integrals have to be evaluated numerically. From (1.24), 

these are 

{IXE - l£0} h(z,z')dz' (2.1) 
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and 
e Te {iz, - I p o) g(z,z')dz' (2.2) 

where the upper limit is set to L = 19.95/k [see (1.9) of Chapter 4] 
0 0 instead of infinity because the integral equation for {I - I } is Hi ir U 

truncated at z = L. Making the change of variable z' = y'/k and letting 

y = lcz in (2.1) and (2.2), one obtains 

kL 
(2.3) {IXE - h(y,y' )dy' 

0 
kL 

- i;0> g(y,V')dy' (2.4) 

where 

g ( y' y , ) = 2lk (el'y~y'' -e ± ( y + y , )), (2.5) 

and 

My,7*) = l ^ r g(z,z ' ) = k g(y,y ' ) (2.6) 

It is convenient to break h(y,y') and g(y,y') into two parts, one 

for y' < y and the other for y' > y. These expressions become 

g(y.y ' ) 
g < y (y ,y ' ) 
g > y (y ,y ' ) 

(2.7) 

and 

h (y ,y ' ) k g(y,y1) = 
h< y (y ,y* ) 

V y ' y , ) 
(2.8) 

where 
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k g<y(y,y') = -e l y sin(y'), (2.9) 

k g>y(y,y') = -eiy' sin(y), (2.10) 

h<y(y,y') = -ely cos(y'), (2.11) 

aild h>y(y,y') = -1 eiy' sin(y). (2.12) 

This notation is used throughout this section. In order to simplify the 

numerical evaluation of the integrals of (2.1) and (2.2) when a value of 

y is given, it is desirable to determine the number of the subsection 

that y (=kz) is in. If this number is called K, it may be found from the 

equation 

K = (y/H) + 1 
2 + 1 (2.13) 

where the notation [x] represents the integer portion of x. Expressions 

for the integrals (2.3) and (2.4) for both the hybrid expansion and the 

all-pulse expansion are obtained. 

The hybrid expansion for {Ig - Ip^K shown in Figure 4.1(a), is 

r -i 
r x\ y 2 0 < y < H 

{IE ' W ( y ) = r ( 2- 1 4 ) 
1 x. D.-H < y < D.+H N > j > 2. 3 3 3 

The all-pulse expansion for {Ig - IpQ}, shown in Figure 4.1(b), is 

( xP 0 < y < H 
U E - I p o } ( y ) = (2.15) 

1 x" D.-H < y < D.+H, N > j > 2. 3 3 3 

where the xj's in both expressions are constants and 

D. = 2(j-l)H (2.16) 
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th 
is the midpoint of the j subsection. The expressions for K and D^ are 

used throughout this section. 

5.2.1 The Evaluation of the Integral Weighted by h(y,y') 

The integral (2.3) may be written in the form 

f ( y ' ) h<y(y,y')dy' + k 
D +H • N 

f ( y ' ) h>y(y,y')dy' (2.17) 

where N (=200) is the total number of subsections, kL = D^+H, and f(y') 

is given by (2.14) and (2.15) for the hybrid expansion and for the all-

pulse expansion, respectively. The numerical evaluation of this integral 

for the hybrid expansion is aided by the identities 
x 
t h (y,t)dt = -2 e l y Re[F2(x)], (2.18) 

x 
t"f h (y,t)dt = -2i sin(y) F2(x) 

0 
Dj + H 

h<y(y,y')dy' = -2 e l y sin(H) cos(D_.), 
D.-H 
J y 

h<y(y,y')dy' = -2 e i y sin^(y-Dj+H) cos|(y+D -H), 
D.-H 
2 D.+H 
f 3 

and D.+H 
2 iD 
h>y(y,y')dy' = -2i sin(y) sin(H) e j 

D.-H J 

(2.19) 

(2.20) 

(2.21) 

h>y(y,y')dy' = -21 sin(y) sini(Dj+H-y) e l 2 ( Dj + H + y )' (2.22) 

(2.23) 

where F2 is given by (5.13) of Chapter 3. The evaluation for the all-

pulse expansion requires the additional identities 
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x 

and 

h<y(y,y')dy' = - e l y sln(x), 

h>y(y,y')dy' = -21 sin(y) sin^(H-y) e 1* ( H + y ). 

(2.24) 

(2.25) 

Substituting the hybrid expansion (2.14) in (2.3) and using the identities 

above yields 
DN + H 

1 
2 - i£q} h(y,y')dy* = x* ely Re[F2(y)] 

N 
+ i sin(y)(x [F (H)-F (y)] + sin(H) £ x e j) , 0 < y < H, 

j=2 
1 (2.26) 

and D+H N 
{ILe - l£0) h(y,y' )dy' = e iy xx Re[F2(H)] 

K-L 
+ (K>3) sin(H) I x. cos (D.) + x sinKy-D^+H) cos|(y+D -H) 

j=2 K K 

+ i sin(y) 
N 

sin|(D +H-y) e i 2 (°K + H + y ) + (K<N-l)sin(H) I ^ eiDj 
K K j-K+1 J 

y > H. (2.27) 

In the above formulas, x is the moment method hybrid expansion solution 

vector for - Ip„} that is obtained in Chapter 4. The corresponding Ji ir U 
formulas for the all-pulse expansion (2.15) are obtained using (2.24) and 

(2.25) to replace the terms involving the Fresnel integral. The logical 

expressions preceding the summations are equal to one, if true, and equal 

to zero, otherwise. 
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5.2.2 The Evaluation of the Integral Weighted by g(y,y') 

The integral (2.4) may be written in the form 
y 

k 
0 
f ( y ' ) g < y(y,y')dy' + k 

VH 
f ( y ' ) g > y(y,y')dy' (2.28) 

where f(y') is given by (2.14) for the hybrid expansion and by (2.15) for 

the all-pulse expansion. The numerical evaluation of this integral for 

the hybrid expansion uses the identities 

t 2 g (y,t)dt = -2 e Im[F2(x)], 
0 
x 
t 2 g (y,t)dt = -2 sin(y) F2(x), 

0 
Dj + H 

g<y(y,y')dy' = -2 e l y sin(H) sln(D ), 
D.-H 

2 y 

g<y(y,y')dy' = -2 e l y sin§(y-D -HI) slnJ(yH) -H), 
D.-H 

D.+H 
f J 
g> (y,y')dy' = -2 sin(y) sin^. ̂  

and D.+H r J i o 
g>y(y,y')dy' = -2 sin(y) sin(H) e j 

D.-H J 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

|(D,+H-y) e ^ V 1 * 5 0 , (2.33) 

(2.34) 

where F2 is given by (5.13) of Chapter 3. The evaluation for the all-

pulse expansion uses the additional identities 

<y (y>y')dy' = -2 e
i y sin2(x/2) (2.35) 
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and H 
g> (y.y')dy' = -2 sin(y) sinf(H-y) e i 2 ( H + y ). y (2.36) 

Substituting the hybrid expansion (2.14) in (2.4) and using the above 

identities yields 

VH 
{I® - IpQ} g(y ,y' )dy' = x* In. [F2<y) ] e ± y 

+ (xf [F (H)-F (y)] + sin(H) £ x^ e j) sin(y), 0 < y < H, 
j=2 

(2.37) 
and DN + H 

(I® - I®0} g(y,y*)dy' = e ± y 

K-1 

xx Im [F2(H)J 

+ (K>3) sin(H)J xj sinCDj) + x£ sin|(y-DK+H) sin|(y+DK"H) 

+ sin(y) 
N 

x„ snip K ^ (D +H-y) e
l 2 ( DK + H + y ) + (K<N-1) sin(H) £ xr e1Dj K ~l j=K+l J 

y > H. (2.38) 

In the above, x is the moment method hybrid expansion solution vector 
0 0 for {I - I p n) solved for in Chapter 4. The corresponding formulas for Ej ir U 

the all-pulse expansion of (2.15) are obtained using (2.35) and (2.36) 

to replace the terms involving the Fresnel integral. 

5.2.3 The Numerical Evaluation of the Integrals Used to Find A, the Con-

sistency Constant 

The consistency constant, A, is given in (1.17) in terms of two 

integrals, each of which may be written in the form 
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kL 
FkL<6> 

{tQ T0 , ikz , 1 
E ~ PO 6 d Z = k 

6 T0 {i; - Ip 0>(y)e i ydy (2.39) 

where the upper limit has been reduced from infinity to kL because the 

integral equation for {l„ - I„„}, Equation (1.9) of Chapter 4, is trun-li rU 
cated at kL. Substituting the hybrid expansion (2.14) in the above yields 

kL 
1 
2 

N 

0 
{IE - IpQ} e i y dy = x[ F2(H) + sin(H) £ xje^lUj. (2.40) 

J —2 

The corresponding expression using the all-pulse expansion is 

kL 
1 
2 

,t6 T0 , iy . p . ,„,_,. i(H/2) 1IE - Ip()} e dy = sm(H/2) e 
N 

+ sin(H) I x? eiDj. 
0 3=2 

(2.41) 

The closed form evaluation of (2.39) may be carried out using the known 
0 0 analytic solution for {1̂ , - IpQ} to obtain 

F (6) = rT0 T0 , ikz , 2i 
E " PO 6 d z = k^ 

0 0 
1 - cos(0/2) 

sin(0/2) (2.42) 

This equation is used in the next section to check the accuracy of the 

numerical evaluation. 

5.3 The Numerical Results for I H 

In this section the formulas of the preceding sections are used to 

find {I - I } from {I - !„„}. Results due to both the hybrid expansion ri po ii rO 
and the all-pulse expansion for {1^ - Ipg) a r e compared to the standard 

for angles of incidence 0 = 45°, 90°, and 135°. The standard is computed 

from the closed form results. Only the moment method results for H = 0.05, 
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kL = 19.95 (200 subsections) and 9 = 45°, 90°, and 135° are used. The 

current for 9 = 180° is zero. The computer program used to generate 

these results is given in Appendix D. 

5.3.1 Accuracy of the Numerical Results for the Consistency Constant, A 

In this section the accuracy of the numerical integration (2.39) for 

F^j (9) is tabulated. The accuracy of the numerical evaluation of the 

consistency constant A, also referred to as A., is also tabulated. o 
Consider the expressions for F^(9) in (2.40) and (2.41). It is 

helpful to watch the convergence of the series on the right-hand side of 

both equations as the series is summed. Study of this progression indi-

cates that the real part, which should be zero, oscillates around zero 

when the hybrid expansion solution for {lE - IpQ} is used, but does not 

when the all-pulse expansion solution is used. This seems to indicate 

that the hybrid expansion solution gives better answers than the all-

pulse expansion solution does. Table 5.1 gives the accuracy of the num-

erical results using each solution, and verifies the superiority of the 

hybrid expansion solution, but only for the real part. Note that the 

imaginary part, the most important part, is more accurate for the all-

pulse expansion solution. It should also be noted, however, that the 

accuracy of the magnitude of the all-pulse expansion result is about the 

same as that of the hybrid expansion result. The phase of the latter 

result is much better than that of the former because the real and 

imaginary parts of the result for the hybrid expansion are accurate to 

about the same number of decimal places while those for the all-pulse 

expansion are not. For these reasons, it may be said that the result due 
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Table 5.1 

Accuracy of the Numerical Results for kZ^F^CO) 

Decimal places of accuracy 

Hybrid 
results 

expansion 
used for 

All-pulse expansion 
results used for 

4 I6 - I9 
E PO Numerical 

value of 
standard Real Imag. Real Imag. 

Numerical 
value of 
standard 

kZ0FkL(45°) 2.5 2.5 1.5 3.2 0.0 
+10.3978 

kZ0FkL(90°) 2.5 2.3 1.3 3.0 
* 

0.0 
+i0.8284 

kZ0FkL(135° ) 3.5 2.3 1.1 3.1 0.0 
+11.3364 

kZ0FkL(180° ) 1.9 1.9 1.1 1.8 0.0 kZ0FkL(180° 
+i2.0 

Notes: 1. Decimal places = _1°810 s-a| as defined in Appendix A. 

2. All standard real parts 
"Real" are = -log^Q|a|. 

are zero, so the numbers under 

3. Standard: 

k zO F~ ( 0 ) = Z 0 
,T0 6 . iy, _ 1 - cos(8/2) 
(It? ~ l™) e dy 2 1

 • ' / Q — . E PO ] sin(0/2) 
0 
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to the hybrid expansion is slightly better than the result due to the 

all-pulse expansion. The poor accuracy obtained for the 0 = 180° case 

might be expected because in Figure 4.6 {lE - IJQ) IS not negligibly 

small at the truncation point of kL = 19.95. 

The accuracies of the ^^(0) described above become important when 

these numbers are used to obtain AQ, the consistency constant, from 

Equation (1.17). Table 5.2 gives the decimal places of accuracy for 

ikAg. The two cases shown are for 0 = 45° and 0 = 135°. For all angles 

of incidence, the imaginary part of ikA. is, in theory, zero. It is o 
seen that ikA^ obtained from the hybrid expansion exhibits accuracy to 

about the same number of decimal places in both the real and the imagi-

nary part, while that for the all-pulse expansion does not. As is argued 

above for F1T(0), this means that the ikA„ that is evaluated from the kL t) 
hybrid expansion is slightly better than that evaluated from the all-
pulse expansion. In conclusion, it may be said that the numerical for-
mulas for ikA seem to converge quite well to the actual values. 

0 

5.3.2 Accuracy of the Numerical Results for {IR - IpQ} 

The numerical results for {I - I } are plotted along with the n po 

standard in Figures 5.1 through 5.3 for the angles of incidence of 45°, 

90°, and 135°, respectively. The standard or "exact" (IR - I p Q} is 

obtained from (5.14) of Chapter 3 and (1.3). For each case, two dashed 

curves are plotted along with the standard. The fine dashed curve is the 

{IR - IpQ} that is obtained from (1.24) when the hybrid expansion moment 

method results for {l„ - are used. The coarse dashed curve is that H rO 
obtained when the all-pulse numerical results are used. 
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Table 5.2 

Accuracy of the Numerical Results for ikA^, the 
Consistency Constant 

ikA. 45' 

ikA 

Decimal places of accuracy 

135' 

Hybrid expansion All-pulse expansion 
results used for results used for 

T9 - iL I0 • - I9 
E PO E PO 

Real Imag. Real Imag. 

2.8 3.0 3.2 1.7 

3.7 3.2 3.8 2.1 

Numerical 
values of 
standard 

ikA, 

1.3066 

0.5412 

Notes: 1. i k A
9 0° = 1 , 0 a n d ikAi80° = e x a c t ly-

2. All standard imaginary parts are zero, so the numbers under 
"Imag." are = - loggia |. 

3. Standard: 

2 cos2(0/2) + sin 0(kZ F (0)/2i) 
ikA = — = /2 cos(0/2) . 

1 + (kZ0Foo(ir/2)/2i) 
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O'Oai O'SEt 0"06 Ôt O'O O'Qt- 0'06- O'SET- O'OSt-

•sssjSsp '{ [-D jo esDiy 

X) •H 
U 

>s 53 
01 X 4-J 
O •y 
60 P3 •H XJ C3 O ft to CU n M o u 
to o •u LO co 3 rH to CU II p4 CD rH CO H u O •H C4H 
U 0) CO 0 G 3 o » •H 4-1 0) 3 X rH 4-1 o C/3 X 4-1 CI •H O > •H to 4-1 C3 o CO cO ft X X P3 p« 
0) <u X CO 4-1 rH 3 UH ft o 1 rH a rH o <d CO •H 01 M x cfl 4-1 & 0 XI O c O cfl 

Cl 

cu >H 3 
60 •H Po 

S'tr S'E 85 VS ft 
•(ai/A)/(ai/vuj) '|{odl-HI>| •(LU/A)/(UJ/VUJ) '{0dI-Hl} jo U D d |D9d 

X 
LD 

JD 
I 



127 

For all three angles of incidence, the finely dashed curve is in-

distinguishable from the standard. The coarsely dashed curve, on the 

other hand, visibly departs from the standard for 8 = 45°. This suggests 

that the hybrid expansion gives better answers for - IpQ} than the 

all-pulse expansion does. 

It is interesting to observe the edge behavior of {IR - I p Q} when 

the two expansions for (I„ - I^} are used in (1.24). Figures 5.4 and h rU 
5.5 show plots of the edge behavior for 0 = 45° and 90°, respectively. 

Results corresponding to the hybrid and all-pulse expansions are shown 

with finely and coarsely dashed lines, respectively. It is clear that 

the hybrid expansion result is much better than the all-pulse result and 
i 

that the former result has z2 edge behavior whereas the latter does 

not. This is not surprising in light of the fact that the hybrid expan-
l 

sion for {X — Ipr.} has z 2 edge behavior whereas the all-pulse expan-Ej It U 
sion does not. 

It is desirable to compare the form of these results for {X^ — I p Q} 

with those that would be obtained if a moment method solution for were 

found directly. As the graphs of Figures 5.1 through 5.5 show, the CSF 

method produces continuous currents. A pulse expansion moment method 

solution of an E-field integral equation would not have produced contin-

uous currents. For essentially the work of solving what is a pulse 

expansion moment method problem, the final result takes the form of a 

sine expansion function except with the important difference that both 

the phase and the magnitude vary continuously. In all probability, the 

current source-function method described here reproduces a local phase 
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behavior which is more accurate than could have been anticipated in the 

choice of basis functions. That this is the case can be clearly seen by 

looking at the phase in Figures 5.4 and 5.5. This contrasts with the 

moment method which requires that an initial guess be made in the selec-

tion of expansion functions. 

Although it is clear from the graphs of Figures 5.1 through 5.5 that 

the hybrid expansion gives better answers than does the all-pulse solu-

tion, it is not clear exactly how much better the one is over the other. 

Table 5.3 compares the average accuracies of - lpQ} f°r the hybrid 

expansion and for the all-pulse expansion. Two ranges and two angles of 
\ 

incidence are considered. For each angle, the average accuracy of a group 

of points near the edge and of an overall group of points is given. Aver-

ages are tabulated for 9 = 45° and 0 = 90°. The averages for 0 = 135° 

are similar to those for 0 = 90°. 

Generally speaking, Table 5.3 shows that the results for the hybrid 

expansion are about one digit better than those for the all-pulse expan-

sion. This means that if the hybrid results are good to an average of 1%, 

then the all-pulse results are good to only 10%. The results for 0 = 90° 

are better than those for 0 = 45° by an average of 0.5 digit. This in-

accuracy for 0 =45° is clearly visible in Figure 5.1. Thus, while both 

the hybrid and the all-pulse results for 0 = 90° and 0 = 135° appear to 

be equally accurate in the graphs, this is not true. The hybrid results 

are always more accurate than the all-pulse results. This underscores 

the need for using a hybrid expansion if the best possible results are 

desired. 
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Table 5.3 

Accuracy of Zn{IT1 - I } for 0 = 45° and 0 = 90° 0 H po 

Edge Overall 

Hybrid All-Pulse Hybrid All-Pulse 

Average decimal places of accuracy 

0 = 45° 

Real 2.5 1.3 2.8 1.8 

Imag. 2.0 1.3 2.7 1.8 

Mag. 2.8 1.3 2.5 1.8 

Average digits of accuracy 

Phase 2.7 1.9 ' 3.3 1.3 

Average decimal places of accuracy 

0 = 90° 

Real 2.6 1.4 3.3 2.4 

Imag. 2.1 1.4 3.3 2.4 

Mag. 2.8 1.5 3.1 3.4 

Average digits of accuracy 

Phase 2.8 2.0 3.0 1.8 

Notes: 1. "Hybrid" and "All-Pulse" refer to the expansion used for 

2. "Edge" refers to 100 points equally spaced between 0 and 
0.05 (see Figures 5.4 and 5.5). 

3. "Overall" refers to 399 points equally spaced between 0.05 
and 19.95 (see Figures 5.1, 5.2, and 5.3). 

4. The standard is given by (5.14) of Chapter 3 and (1.3). 
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5.4 Conclusion 

The results shown here demonstrate that the current source-function 

technique is suitable for numerical application. Even more important is 

the fact that this technique gives a numerical result that is continuous. 

The numerical result is also identically equal to zero outside of the 

domain of application. The technique, although relying on the moment 

method solution of an integral equation, yields a result for the current 

for any desired argument rather than at a finite number of points. The 

phase of the CSF solution exhibits a good approximation to the actual 

local behavior. Accurate detailed information about the behavior of the 

unknown current is available from the CSF solution by simply evaluating 

the superposition integral at a larger number of points. This does not 

require increasing the number of basis functions used to represent the 

current as is the case with the moment method solution of Pocklington's 

or Hallen's equations. 
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6. SCHWARTZ DISTRIBUTION THEORY AND THE STRIP PROBLEM 

This chapter applies the CSF technique to the problem of electro-

magnetic scattering of an incident plane wave by a finite width perfectly 

conducting strip. Although the analytic procedures developed for the 

half-plane problem would seem to be applicable to this problem a complete 

description of the solution is still to be found. To complete the proce-

dure, an even solution of the homogeneous finite part integral equation 

is required. The CSF technique for the strip problem is described in 

terms of Schwartz distribution theory. This insures that each procedural 

step has a well-defined meaning. De Jage^ (1969, p. 78) comments that 

(instead of using the finite part) supersonic wing theory "can be developed 

in a much shorter and more elegant way by employing the theory of distri-

butions ." 

Section 6.1 presents the formulation of the strip problem and results 

of some previous studies. Section 6.2 introduces the concepts of distri-

bution theory which are employed in the CSF approach to the strip problem. 

The remaining sections present the results obtained so far in applying the 

CSF technique to the strip problem. 

6.1 The Strip Problem 

The problem of scattering of a plane wave by a conducting strip is 

well-known. The geometry for the strip problem is the same as that for 

the half-plane problem, given in Figure 2.1, except that the metal extends 

from -b to b, i.e., -b < z < b. The exact solution has been found by con-

sidering the strip as a limiting case of an elliptic cylinder. Unfortu-

nately, this solution is in terms of an infinite series (of Mathieu 
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functions) which is not rapidly convergent. Descriptions of the exact 

solution to the strip problem are given by McLachlan (1947, p. 358) and 

Meixner and Schafke (1954, p. 373). Calculations of Mathieu function 

series for relatively narrow strips have been performed by Strutt (1931) 

and Morse and Rubenstein (1938). Moullin and Phillips (1952) use Morse 

and Rubenstein's expansions to calculate the current distribution on the 

strip. Miles (1949) gives the exact solutions of the integral equations 

for the current on the strip in terms of an infinite series of Mathieu 

functions. Dorr (1952) shows that the E-polarization strip integral equa-

tion has even Mathieu functions as eigenfunctions. 

The E- and H-polarization integral equations for the currents Ig(z) 

and T (z) on the strip are, respectively, H 
b 
" IE(z') H^1)(k|z-z'|)dz' = ^ - e " i k z C O S 0, |z| < b, (1.1) 

and , 
,2 b 

( ~ + k" ) 
dz 

IH(z') H^ (k|z-z'|)dz' = ̂  sine e" 
i 0 
b IzI < b. (1.2) 

Cameron (1966) utilizes variational techniques to obtain an approximate 

solution to the strip integral equation for the E-polarization and develops 

integral equations for the even and odd parts of the solution. Methods for 
l 

handling the t 2 edge singularities in (1.1) in numerical solutions are 

given by Shafai (1971), Dmitriev and Zakhorov (1967), and Bolomey (1974), 

among others. Approximate solutions of the strip problem for narrow strips 

subjected to a normally incident plane wave have been obtained by Sommerfeld 

(1964, pp. 273-284) and Born and Wolf (1970, pp. 589-590). For the narrow 
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strip and the case of normal incidence, the H-polarization current I„(z) rl 
has z-dependence of the form 

IR(z) = C;L(b2 - z2)^, (1.3) 

and the E-polarization current Ig(z) has z-dependence of the form 

IE(z) = c 2 ( b 2 - Z 2 ) " ^ , (1.4) 

where c, and c„ are constants. This solution for I„(z) may be obtained by X Z t 
approximating the Hankel function kernel in (1.1) by a logarithmic kernel. 

The integral equation 
i 

f(x') An|x-x'|dx' = 1 (1.5) 
-1 

? -i 
(1-x ) 2 

has the exact solution f(x) = - . „ — . 

Solution techniques for singular integral equations with logarithmic 

and/or x 1 kernels have been given by Latta (1956), Erdogan (1969) , Kanwal 

(1971), Muskhelishvili (1958), and Miiller (1967), among others. The solu-

tion of the integral equation 

b P(t') in|t-t'|dt' = f(t) + constant (1.6) 
a 

for an elasticity problem is given by Muskhelishvili (1958, pp. 305-309). 

Both sides of (1.6) are differentiated to obtain the solution. Kanwal 

(1971, p. 210) shows that a solution of 

1 
£ M d y = 0 (1.7) x - y 

1 
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is g(x) = C(1 - x ) 2, where C is any constant. This same solution is 

also obtained when both sides of (1.5) are differentiated. 

An important consideration in a finite problem is symmetry. The 

solution can always be expressed as the sum of an even part and an odd 

part. Consider the equation 
b 
f(x) Hq"^ (k|x-y|)dx = g(y), -b < y < b. (1.8) 

a 
-b 

It may be shown that if g(y) is odd, i.e., g(y) = - g(-y), then f(x) is 

also odd. If g(y) is even, i.e., g(y) = g(-y), then f(x) is even. The 

derivative of an odd function is an even function and that of an even 

function is an odd function. These important properties are very useful. 

6.2 Pertinent Concepts in Schwartz Distribution Theory 

Schwartz's theory of distributions provides a rigorous justification 

for a number of manipulations that are otherwise unjustifiable, e.g., dif-

ferentiating the unit step function to obtain the delta function. Opera-

tions of this type are only a small part of the total theory. Schwartz 

(1966a, pp. 38-44) utilized Hadamard's finite part in the development of 

the theory of distributions to define certain integrals which otherwise 

would not be defined. In recent years, several excellent textbooks on dis-

tribution theory have appeared, for example, Zemanian (1965), Schwartz 

(1966b), Gel'fand and Shilov (1964), Arsac (1966), Jones (1966), and 

Antosik, Mikusiriski, and Sikorski (1973), among others. The discussion 

here will be directed toward the solution of the problem at hand and will 

therefore be quite limited. The theory of distributions provides the 

operations that are required to handle the strip problem. 
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6.2.1 The Definition of a Distribution 

There are two equivalent ways in which a distribution may be defined. 

First, a distribution may be defined to be a continuous linear functional 

f on a space 3 of testing functions cp(x). This approach is used by 

Schwartz (1966a), Zemanian (1965), and Gel'fand and Shilov (1964). Second, 

a distribution may be defined as a limit of equivalent fundamental sequences 

of continuous functions. The sequential approach to the development of the 

theory of distributions is presented by Jones (1966) and Antosik, Mikusinski, 

and Sikorski (1973). To each distribution in the functional approach, there 

is one corresponding distribution in the sequential approach. The func-

tional approach to distribution theory is used here because it is the 

approach that is most often used and therefore possesses a greater body of 

literature. 

Definition: A distribution is a continuous linear functional on the space jfr. 

For our purposes, the space of testing functions £ consists of all com-

plex-valued functions cp(t) of a real variable t that possess derivatives 

of all orders (i.e., are infinitely smooth) and vanish outside of some 

finite interval. A functional f on 3 is a rule that assigns a complex num-

ber (f,cp> to every member of (f,cp) is sometimes written as f(cp). A 

continuous linear functional f on ̂  possesses 

(1) linearity, that is, for any two testing functions cp̂  and cp2 in 3 

and any complex number a 

<f,cp]+cp2> = < f »cp 1> + <f,cp2) 

<f,acp1> = ot<f ,cp 1> . (2.1) 
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(2) continuity, that is, for any sequence {cp (t)} v = l in 3 such that 

W v + o o 9 i n V V-* 1 0 

then 

lim |<f,cp> - <f ,cpv> | + 0. (2 .2) 

The space of all such distributions is denoted by • 

When f(t) is locally integrable, a distribution f corresponding to 

f(t) can be defined through the convergent integral 

Distributions corresponding to locally integrable functions are called 

regular distributions. Although distributions do not possess values at 

points, regular distributions may be associated with ordinary functions 

which do have point values. Zemanian (1965, pp. 6-9) shows that "a regular 

distribution determines the function producing it almost everywhere." He 

concludes that "without ambiguity we may consider an equivalence class of 

functions and its regular distribution as being the same entity." For this 

reason, both the regular distribution and the function that generates it 

will, at times, be referred to as "the" distribution. 

All distributions that are not regular are called singular distribu-

tions. One example of a singular distribution is the delta functional 

which assigns the value 

to e v e r y I f the integral (2.3) is divergent, a singular distribution 

may often be defined with the aid of Hadamard's finite part. In such 

00 
<f,cp>= f(t)cp(t)dt. (2.3) 

<S,cp> = cp( 0 ) (2.4) 
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cases, f is called a pseudofunction and is identified with the letters Pf. 

A distribution corresponding to Pf[f] can be defined through the finite 

part integral 

<Pf[f],cp> = Fp f(t)cp(t)dt. (2.5) 

At times, both a singular distribution and its corresponding pseudofunction 

will be referred to as "the" distribution. An example of a pseudofunction 

is 

Pf l+(t). (2.6) 

The distribution corresponding to this pseudofunction is assigned the value 

<Pf t 2 l+(t), cp(t)> = Fp 
3 

t 2 cp(t)dt (2.7) 
0 

for every cp £3. Instead of introducing the finite part concept as Schwartz 

does, some authors, notably Gel'fand and Shilov, use a procedure called 

regularization to treat the divergent integrals that occur. This regular-

ization is generally equivalent to taking the finite part. 

The concept of a distribution can easily be extended to the n-dimen-

sional case by introducing testing functions cp of n real variables that 

are infinitely smooth and that vanish outside of some bounded domain of 

the n-dimensional Euclidean space /pn. 

Definition: A distribution on is a continuous linear functional on the 

space 3 of testing functions on 

A locally integrable function f (_t) generates a distribution on through 

the multiple integral 
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<f, cp> = f(t)cp(t)dt, 9 € 3, (2.8) 
/ ? n 

where (_t) = (t^t^ • • • ,tn> . 

6.2.2 The Differentiation of a Distribution 

Every distribution has derivatives of all orders. This is based on 

the fact that (f, dcp/dt) is meaningful even if df/dt does not exist. It 

is this observation that allows distribution theory to generalize the de-

rivative. In fact, every distribution may be expressed as a finite order 

distributional derivative of an ordinary (locally integrable) function. 

The first derivative df/dt of a distribution f is defined as the func-

tional on 3 given by 

<df/dt, cp> = - <f, dtp/dt) , cp € 3. (2.9) 

This is a convenient definition because dcp/dt itself is an infinitely dif-

ferentiable testing function of finite support belonging to 3. First order 

partial derivatives 8f/3t^, i=l,2,**»,n, of any distribution f defined 

over are the functionals on 3 given by 

<9f/3ti, cp) = - <f, 8cp/9ti>, cp £ 3. (2.10) 

As an example of the procedures involved in distributional differen-
2 2 —— b tiation, consider the distributional derivative of g(t) = (b -t ) 21 , (t). -b 

The ordinary derivative is 

= 

dt 

0 |t| > b 
? |t| = b (2.11) 
t(b2-t2)"T ltl < b. 
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The distributional derivative is found by applying (2.9). 

b-e 
<dg/dt, cp> = - <g, dcp/dt> = - lim 

e->-0+ 
(b2-t2)"2 ^ dt = dt 

-(b-e) 

= lim 
e+0+ 

b-e 
t(b2-t2)"2 cpdt - ( 2 b e ) ~ 2 [ 9 ( b ) _ cp(-b)] 

-(b-e) 

= Fp ? 2 — t(b -t ) 2 cp dt <Pf [t(b2-t2) 2]l^b(t), cp) 
-b 

The distributional derivative of g is thfe pseudofunction 

(2.12) 

Pf [t(b2-t2)^] l^(t). (2.13) 

The sequential approach to the theory of distributions handles the 

definition of the derivative of g differently. A delta sequence is a 

sequence that converges to the delta function, i.e., 

6(x) = [Sn(x)] (2.14) 

where the square brackets [ ] denote the limiting process. If the sequence 

gn(x) = 6^(x) * g(x) [^n(x) convolved with g(x)] converges to g(x), then 

dg/dx is defined by the limiting sequence 

= dx 
dgn(x) 
dx (2.15) 

A graph of dg^/dx for fixed n gives an approximation of the distribution. 
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6.2.3 The Convolution of Distributions 

For ordinary functions f(x) and g(x) defined for < x < the 

expression 

( f* g )(x) = f(C) g(x-?)d? (2.16) 

is called the convolution of f and g. The integral does not always exist. 

If one of the functions f or g has compact support and therefore vanishes 

outside of some finite interval, then f * g exists for almost all values of 

x. 

In the development of the convolution of two distributions, the con-

cept of the direct product of the distributions must be introduced. If 

cp(t, T) is a two-dimensional testing function in J} and if f(t) and g(x) 

belong to the distribution spaces and , respectively, then the direct 

product f(t)®g(x) is a distribution in J}' defined by t , T 

<f(t)®g(T), cp(t, T)>=<f(t), <g(T), Cp (t, T ) » . (2.17) 

The direct product is commutative and associative for all distributions of 

interest here. 

The rule that defines the convolution h(t) = f * g of two distributions 

f and g is given by 

< f * g , cp) = <f(t)®g(T), cp(t+x)> 

= (f(t), <g(x), cp(t+x)». (2.18) 

A meaning can be assigned to the right-hand side if either f or g has 

bounded support. If g is taken to be the distribution with bounded support, 
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this requirement insures that (g(t), cp(t+x)) is itself a testing function 

in 3. 

Since the current on a finite body is of finite support, the convolu-

tion of the current with another function is usually defined. The convolu-

tion of distributions can be defined under other conditions, but these are 

beyond the scope of the present discussion. Since the direct product is 

commutative, it follows that the convolution of two distributions is com-

mutative, that is, 

<f * g, 9> = <g* f, cp>, cp € 3. (2.19) 

Convolution is not in general associative, but it is associative if the 

supports of all of the distributions, except for at most one of them, are 

bounded. That is, 

<f * ( g * h ), cp> = <( f * g ) *h, cp), cp € 3, (2.20) 

if the supports of at least two of the distributions f, g, and h are 

bounded. 

The delta functional and its derivatives are very important in con-

volution. They exhibit the properties 

< 6 * f , cp) = < f , cp) , 

<6' * f, cp) - <f*, cp), (2.21) 
and 

<6(n) * f, cp> = <f(n), cp), cp € 3. 

The first derivative of the distribution f is the same as the convolution 

of f with the first derivative of 6. The derivative of the convolution 

obeys the property that 
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D( f * g ) « (Df) * g = f * (Dg) (2.22) 

where D = d/dx. This is easily proved by using associativity and the fact 

that Dh = 6' fth, that is, 

D( fig ) = 6'*( f * g ) = ( 6' ft f )ftg = f ft ( 6' ft g ). (2.23) 

This is true as long as either f or g is of finite support. 

Properties of various distributions and their convolution with other 

distributions are given by De Jager (1970), Bremermann et al. (1967), 

De Jager (1969), Beltrami and Wohlers (1966), and Shilov (1968), among 

others. 
i 

6.2.4 Convolution Equations 

Many of the differential, integral and integro-differential equations 

useful in solving electromagnetics problems may be written in the convolu-

tion form 

h ft y = f. (2.24) 

Here, h and f are given distributions and y is an unknown distribution. 

The equation is a differential equation when h is a linear combination of 

the derivatives of the delta functional. It is an integral equation when 

h has finite or infinite, but not vanishing, support. It may have a unique 

solution or no solution, or even an infinite number of solutions. The 

solution of (2.24) must satisfy 

(h ft y, cp> = <f, cp) (2.25) 

for every For the strip problem integral equation, the support of 

the solution y is known. This restricts the possible classes of solutions 
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to those having the proper support. 

An important concept in solving distributional differential equations 

is that of the fundamental solution. Consider the equation 

£y = f (2.26) 

where Z is any linear differential operator with constant coefficients, 

that is, £ is of the form 

£ = a n ^ + . . . + a 0 . (2.27) 
dz 

Equation (2.26) may also be written as 
l 

(£6) *y = f. (2.28) 

A fundamental solution for this equation, denoted by E(z|?) with pole at 

£ satisfies the equation 

£E = S(z-C). (2.29) 

Boundary conditions per se are not required. A distribution E is a solu-

tion of this equation if and only if 

<£E, cp) = (E, £*cp> = cpU) (2.30) 

for every £* is the adjoint of Any two fundamental solutions for 

£ differ by a solution of the homogeneous equation £v = 0. When a funda-

mental solution E is known, a solution of (2.26) can be written as the 

convolution 

y = f * E. (2.31) 

The convolution equation for the current source-function is obtained in 

the next section. 
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6.3 Maxwell's Equations and the Convolution Equation for the Current 

Source-Funct ion 

The fundamental relationship between the scattered electric field 
g 

E and the induced current Ĵ is, from (1.10) of Chapter 3, 

2 s 2 s 1 2 1 V E + k E = - - [VV-J + k J] E - i U. (3.1) 
1/ » 

g 

Here, IS is the electric field, ̂ J is the current, and U is the vector cur-

rent source-function. A treatment of Maxwell's equations in a space of 

distributions is given by Schmidt (1968). 

Let cp(x,y,z) be a three-dimensional testing function with 

Then the equation 
(V2 + k2)$ = - <5 (3.2) 

must satisfy 

<$, (V2+k2)cp> = - cp(0,0,0) (3.3) 

for all cpGih Here, $ is a fundamental solution for the operator 

(V2 + k 2) and is 

ikR 
* • I s " (3-4> 

2 2 2 2 where R = x + y + z . This result is given, for example, by Stakgold 

(1967, Volume II, pp. 53-55). Since U has finite support, the solution g 
for E may be written 

- - ( U* 4 ) = [(V2 + k2)ES] * $ = E S* (V2 + k2)0 = - E S* 6 = - ES(x,y,z) 
v - -

o r s i <ES(x,y,z), cp> = | (( U * $ ), cp) (3.5) 
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for every cp€^. 

For E- polarization in the strip problem, the current takes the form 

J E = IE(z)l_b(z) S(x) y (3.6) 

and the current source-function becomes 

<U cp) = <VV-J + k2J , cp) = k 2 <J , cp> (3.7) 

For the H-polarization, the current may be written as 

J H = IH(z)l_b(z) 6 (x) z = z. (3.8) 

The current source-function becomes 

<UR, cp) = <VV-JH + k JH, cp) 

^ ̂ H ~ 92 2 A 
= < ( 7 T + k <P> 9z 

(3.9) 

Now 
2 2 

<( ^ + k 2 ) cp) = <IH(z)l^(z), ( -^-y + k 2 ) cp(0,y,z)> = 
9z 3z 

-b 

9 2 
IR(z) ( — 2 + k ) cpdz 

9z 

dl H dcg 
dz dz dz + k Ijj cp dz = 

-b 

= Fp 
-b 

( + k 2 )IH(z) cpdz 
dz 

(3.10) 

Therefore, 

„2 
( + k 2 ) = 6 (x) l^b(z)( Pf + k 2) IH(z) = 6 (x) u(z) (3.11) 
9z dz 
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where the subscript H has been left off u for convenience. This defines rl 
what will also be called the current source-function for the H-polarized 

2 d 2 2 case. The use of the notation Pf —77 I„ means that d I„/dz is to be , Z H n dz 
taken as a distribution, per se. 

Using the property that S(x)*f(x) = f(x) and substituting (3.7) in 

(3.5) gives 

Ey(x,z> - - {IE(z)l^b(z)}*H<1)(k[x2+z2]®) 

IJZ') H^1)(k[x2+(z-z')2]2)dz'. (3.12) Ev ' 0 
-b \ 

For the H-polarization, after using the same property and substituting 

(3.11) in (3.5), the tangential (z component) scattered field becomes 

E^(x,z) = - ^ u(z') H^1)(k[x2+(z-z')2]2)dz'. (3.13) 
b 

The total tangential fields, for the E- and H-polarization, respectively, 

are 

and 

where 

and 

E^(x,z) = E®(x,z) + Ej(x,z), (3.14a) 

Et(x,z) = ES(x,z) + E1(x,z) (3.14b) z z z 

Ei _ e~ik(z cosG + x sine) (3.15a) 

,̂1 . . -xk(z cos6 + x sine) ,0 u , > E = s m6 e . (3.15b) z 

By the boundary condition, the total tangential electric field on the con-

ducting strip must vanish. Introducing the notation 
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r a(x) x 6 s /-0 x £ s 
a (x) = { and a (x) = { (3.16) 

1 0 x i s S 1 a(x) x I s 

where s denotes the collection of points not in s = f-b, b], the total 

electric field along x = 0 may be expressed as 

Et(0,z) = 0s + fg(z) (3.17) 

where s = [-b, b] and f is an unknown function equal to the total field 

along x = 0 and in The convolution equations for the E- and H-

polarizations, respectively, become 

and 

uSjH(z) *H^1)(k|z|) = ~ ( sine e"lkz C° S 0 -f f i > HU) )• (3.19) 

The exact solution of the E-polarization equation for I„(z) may be Ji 
expressed in terms of a series of Mathieu functions. Various approximate 

methods of solution have been discussed in the literature. The equation 

for u(z), however, contains a pseudofunction and therefore can not be 

solved directly by expanding the unknown in a set of basis functions. The 

left side of this equation can also be written as 

[( 6" + k26 ) * (XHl^b) ] *H^1}(k|z|). (3.20) 

This follows from (2.21) and (3.9). The next section details an unsuccess-

ful attempt to solve (3.19) for u(z). 
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6.4 An Attempt to Solve for u(z) 

Consider the convolution equation 

y ^ H ^ C k M ) - l 8 + fft (4.D 

where y and f are unknown distributions with support s = [~b,b] and 

respectively. Assuming that 1 + fft corresponds to a once-differentiable s s 
function, then 

h (1s + V - °s + ( 4- 2 ) 

where the prime represents a new function (or distribution) which corre-

sponds to the derivative of f . Since 

h { ys* Ho 1 ) ( ki zl ) } -
d ys 
dz *H^1}(k|Z|), (4.3) 

g 

any constant times the pseudofunction -ĵ — may be added to the unknown in 

the convolution equation without affecting the right-hand side in the 

interval [-b,b]. This is seen to be equivalent to the case when the homo-

geneous finite part integral equation is solved by differentiating a 

locally integrable solution of the ordinary integral equation. The follow-

ing discussion is based on this equivalence. 

The integral equation for u(z) may be written as 

b Fp u(z') Hpj (k| z-z' | )dz' = ̂  sine e C , z€s = [-b,b]. (4.4) 
U Z0 -b 

A solution for u(z) of this finite part integral equation satisfies the 

distributional convolution equation of Equation (3.19) which is 
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<us(z)ftH^1)(k|z|), cp) = (-^[sine e ± k z C° S 0 - f g (z) ], cp > , (4.5) 

for all cp€^. Here, the emphasis is placed on trying to solve the finite 

part integral equation (4.4) and hence obtain a solution of (4.5). 

It would seem reasonable to follow the same approach to solving (4.4) 

which proved successful in the case of the half-plane problem. Thus a 

solution of the form 

u(z) = sine v(z) + A wg(z) + B WQ(Z) (4.6) 

is desired where v(z) is the solution of the ordinary integral equation 

b 
v(z') H ^ k l z - z ' b d z ' = ^ e " l k z C O S 0, z € s, (4.7) 

-b 

and wg and wq are, respectively, even and odd (probably) pseudofunction 

solutions of the homogeneous finite part integral equation 

b 
Fp w(z') HQ"^ (k|z-z1|)dz' = 0 , z € s, (4.8) 
-b 

_3 

subject to the edge condition w(z) = 0( z 2 ) as z ->• ±b. An odd solution 

WQ(Z) is easily found, but thus far, an even solution Wg(z) with the pro-

per edge behavior has not been determined. 

To determine a solution of (4.8), consider the integral equation 

b 
y(z') (k|z-z'| )dz' = e" l k a Z - fg(z), - » < z < °° , (4.9) 

-b 

where a = cos6 and fg(z) is defined by (3.17). Rewriting the e 

factor on the right-hand side as [cos(kaz) - i sin(kaz)] and using the 
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symmetry properties that are discussed in the last paragraph of Section 

6.1, one finds that the solution y(z') of (4.9) can be written as the sum 

of an even part y (z') and an odd part yQ(z'). The integral equations for 

y (z1) and y (z') are, respectively, 

_b 
y (z1) Hq"'"̂  (k| z-z 1 | ) dz' = cos(kaz), z € s, (4.10a) 

-b 

and 
b 
y (z') (k|z-z'|)dz' = sin(kaz), z 6 s. (4.10b) 

Applying the operator L = ( + ika) to 1(4 .9) yields 

b 
Fp {Ly (z' ) } H Q ^ (k| z-z' | )dz' = 0 - Lf , - » < z < ». (4.11) 

-b 

A solution to the homogeneous finite part integral equation becomes 

w(z) = Ly = ( + ika) (yg - i yQ) = 

= -3— y + k a y + i ( k a y - y ). (4.12) dz Je Jo Je dz o 

At first, it may appear as if w has an even and an odd part. It may be 

shown, however, that the even part is identically zero. To do this consider 

the case when a = 0 in (4.10a) and (4.9) (the normal incidence case). The 

right-hand sides of both equations are unity. Since the edge behavior of 
1 

y(z) for this special case is z 2, it follows that y (z) has the same edge 

behavior for a € [-1,1]. Differentiating (4.10b) with respect to z, using 

(4.12) of Chapter 2, integrating by parts, and assuming that y (±b) = 0, 



153 

one obtains 

-bdy 
^T" Hq1"* (k| z-z' | )dz' = ka cos(kaz), z £ s. (4.13) 

-b 

Comparing this with (4.10a) and assuming that the homogeneous equation has 

only the trivial solution requires that 

dy 
ka y - -j-2- = 0. (4.14) e dz 

This is almost certainly true. More research needs to be carried out to 

prove that it is definitely true. Since yg was assumed to have z 2 edge 
l 

behavior, the edge behavior of y Q appears^to be z2. This seems to verify 

the validity of the assumption that yQ(±b) = 0. Substituting (4.14) in 
(4.12) yields 

w(z) = w (z) = 4- y + ka y . (4.15) o dz e o 
3 

This is an odd function which apparently has edge behavior z 2. The z 

variation of w (z) must be the same for all a £ [-1,11 in order for the o 
present method to yield a unique solution. Since this is true for the 

half-plane problem, it seems reasonable that it also would be true for the 

strip, even though a proof of this has not been found. By differentiating 

this odd solution, an even solution is obtained. This even solution has 
-5/2 

z edge behavior and so is not allowed. 

Although a non-zero even solution of the homogeneous finite part inte-

gral equation with the proper edge behavior has not been determined, one 

will optimistically be assumed to exist to facilitate the present discus-

sion. If one does not exist, then the problem does not have a solution. 
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That an even solution is required may be seen by considering the special 

case of normal incidence. For a narrow strip, the current distribution 

may be approximated as 

IH = c 1 (b 2-z 2A b
b( z). (4.16) 

2 2 2 The current source-function u(z) = (d /dz + k )IT. is seen to be an even H 
_ 3 3 

function with z 2 edge behavior. Clearly, an even function with z 2 edge 

behavior is required to reconstruct the proper current source-function. 

Assuming the existence of an even solution with suitable edge behavior, 

the current source-function may be written in the form expressed by (4.6). 

This formula contains two coefficients which remain to be determined. The 

procedure for evaluating these constants depends upon a consistency condi-

tion which is presented in the next section. 

6.5 The Consistency Condition 

Consider the homogeneous, inhomogeneous, and adjoint homogeneous sys-

tems for -b _< z <_ b: 

The homogeneous system 

£p = 0 p(-b) = p(b) = 0 (5.1a) 

The inhomogeneous system 

£n = f n(-b) = n(b) = 0 (5.1b) 

and 

The adjoint homogeneous system 

= 0 (5.1c) 



155 

2 2 2 

where £ = £ * = ( d /dz + k ). When £n is a pseudofunction in the neigh-

borhood of the edges, boundary conditions on the adjoint homogeneous system 

are not required. Consistency conditions, however, must be satisfied for 

the existence of a unique solution. Multiplying (5.1b) by ^ and (5.1c) 

by ri» subtracting, and integrating, one obtains 

(Wn - n£*<(j}dz = f (z) iKz)dz (5.2) 
-b -b 

for every ifi which is a solution of (5.1c). The integral on the left is 

zero. This may be seen by performing integration by parts on the first 

term on the left. The integral on the l^ft becomes 

/ , dn di|> . 
b 

-b . 
(5.3) 

If dn/dz is finite at the end points, then the adjoint problem has the 

boundary conditions 

iK-b) = M b ) = 0. (5.4) 

If, on the other hand, dn/dz approaches infinity at the end points, then 

no boundary conditions on ip are required because the divergent terms may 

be made part of a finite part integral. Using the fact that 

Fp 
-b 
iJXndz = lim 

e + 0-H 

b-e 
iWEndz - ^ 

-(b-e) 

b-e 

-(b-e) 
(5.5) 

the left-hand side of (5.2) becomes 

b dib -71 dJr (5.6) 
-b 
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The boundary condition in (5.1b) makes this zero. Thus, in order for 

(5.1b) to have a solution, the consistency conditions 

b 
f (z) ip 1(z)dz = 0 (5.7a) 

-b 

and 
b 
f(z) ip 2(z)dz = 0 (5.7b) 

-b 

ikz -ikz must be satisfied where ip̂  = e and ip^ = e or ip^ = sin(kz) and 

= cos(kz). These are necessary conditions. 

The solution to (5.1b) depends on whether (5.1a) has a non-zero solu-

tion. When it does, the system is resonant and an arbitrary multiple of 

the resonant solution of (5.1a) can be added to the solution for n- The 

following theorem, similar to one given by Stakgold (1967, Volume I, p. 85), 

is useful. 

Theorem: System (5.1b) has no solution unless the consistency conditions 

(5.7) are satisfied for every function ip which is a solution of (5.1c). 

This theorem is true only if the derivative of n, the unknown, approaches 

infinity as the edge is approached. This eliminates the adjoint boundary 

conditions. If the adjoint boundary conditions are required, the consis-

tency condition is usually satisfied automatically since the adjoint homo-

geneous system (5.1c) would usually have only the trivial solution. Assum-

ing that the current source-function u may be expressed by (4.6), 

u(z) = sine v(z) + A w (z) + B w (z) , (5.8) 
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the constants A and B may be found by using the consistency conditions 

with ip̂  = ip = cos(kz) and ijĵ  = ip = sin(kz) . "e" and "o" subscripts de-

note even and odd functions, respectively. Since the integral of an odd 

function is zero, the expressions for A and B become 

b 
v(z) cos(kz)dz -sine 

A = 

wg(z) cos(kz)dz 
-b 

and 

-sine v(z) sin(kz)dz 

B = 

w sin(kz)dz o 

(5.9) 

(5.10) 

-b 

6.6 The Solution for the Current 

6.6.1 Off Resonance 

If an appropriate even solution we(z) of the homogeneous finite part 

integral equation can be found, then the current source-function u(z) is 

given by (4.6) and the current is related to the current source-function 

by the convolution equation 

( 6" + k 6 )* I = u(z). (6.1) 

This equation can be solved using a fundamental solution of the operator 
2 2 2 (d /dz + k*"). A fundamental solution satisfies the equation 
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( i" + k i ) * E = 6(Z-5) (6.2) 

as was discussed in Section 6.2.4. One such fundamental solution is 

ikl z I 
E(z) = 2ik (6.3) 

This is given by Stakgold (1967, Volume II, p. 55). The solution for the 

current I„(z) is rt 

IH(z) = u(z)ft E(z). (6.4) 

Substituting this in (6.1) gives 

u(z)* ( 6 " + k 6 )ft E(z) = ,u(z) ft 6(z) = u(z). (6.5) 

This shows that (6.4) is indeed a solution for the current. 

The consistency conditions may be used to show that Iu(z) as given by H 
(6.4) is zero for z £ (-b,b). Assuming that (6.4) may also be interpreted 

as a finite part integral, 

b 

V z ) = 2ik 
, ik z-z', , u(z ) e 1 'dz' 

-b 

2ik 

-ikz u(z') elkz'dz' = 0 z < -b 

ikz 

-b 

b 
i 

-b 

(6.6) 

u(z') e ± k z' dz» = 0 z > b. 

Thus, as long as the consistency conditions hold, Iu(z) is given by (6.4) rl 

for all values of the argument z. For a Green's function with boundary 

conditions g(±b, z') = 0, 
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0(v - sin[k(z'±b)] sin[k(z+b)] > , ,, 
g U ' Z ; " k sin(2kb) ' z < z > 

it may be shown that 

b b 
u(z') g(z,z')dz' = 

-b -b 
u(z') E(z-z1)dz' (6.8) 

as long as the consistency conditions are satisfied. This proves that the 

expression for the current derived by conventional Green's function tech-

niques is the same as that given by (6.4) provided that the consistency 

conditions are satisfied. 

6.6.2 The Case of Resonance 

When the frequency of the incident plane wave is such that 

k = , n = 1,2, • • •, (6.9) 

Equation (5.1a) has a nontrivial solution. For even n, the solution is 
sin(kz) and for odd n, it is cos(kz). At resonance, (6.2) has no solution 

rb 
because the consistency condition <S (z-£) P (£)d£ = 0 is not satisfied. 

J-b 

Here, p(c) is the resonant nontrivial solution to (5.1a). 

At resonance, a modified Green's function must be used. Discussions 

of the modified Green's function are given by Stakgold (1967, Volume I, 

p. 89) and Lanczos (1961, pp. 270-275). The modified Green's function 

satisfies 

£*gM(z|c) = 6(z-C) + C p(z) p(5) (6.10) 

where p(z) is a solution to (5.1a). The consistency condition 



160 

[6(Z-£) + C p(z)p(c)]p(C)dS = 0 

is applied to find the constant C, 

r b 

c = P (Ode 
-b 

1 
b' all n. (6.11 

This insures that a solution for g„ exists. M 
Boundary conditions on g M are not required if pseudofunctions which 

are singular at the ends are present in the current source-function. A 

suitable modified Green's function appears to be 

3M (zk) = 
ik e 1 1 z 
2ik 2kb 

-cos ( sin even 
(kz) (fee), n = (6.12) 

sin cos odd. 
« > « 

This may be verified directly by applying £*. Any constant times p(z) can 

be added to this Green's function to obtain another one. 

The solution for the current corresponding to (6.6) becomes 

b 
(6.13) yo u(z) gM(z|c)dz + C PU) 

-b 

where p(?) is the nontrivial solution to (5.1a) and C is any constant. 

This result tends to suggest that, at resonance, a current can exist even 

though u(z) is negligibly small or zero. The reader is referred to Stak-

gold or Lanczos for further comments. 

6.7 Conclusion 

So far, the results of this chapter are inconclusive. If an even 

function with the proper edge behavior can be found which satisfies (4.8), 
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or if additional techniques can be developed to find the distributional 

solutions of (4.5), then the current source-function technique may be 

used to find an exact solution to the strip problem. More research in 

this area needs to be performed. 

Although time did not permit it here, the strip problem could be 

solved numerically and the results compared to the exact results to verify 

that the current source-function technique is useful in obtaining approxi-

mate solutions for finite problems. It would also be interesting to take 
2 2 2 the exact solution for the current I , to find u = d I„/dz + k I and to ii H H 

compare this with I in order to determine the functions which must be 

added to I„ to obtain u. 
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7. THE THREE-DIMENSIONAL TIME-DEPENDENT CURRENT SOURCE-FUNCTION 

The extension of the current source-function technique to the three-

dimensional time-dependent case is straightforward. The steps in the 

development are briefly outlined here. 

The previous chapters dealt with extreme cases of scatterers with 

sharp edges. The currents on smooth scattering objects without edges do 

not have singular behavior and therefore may be twice differentiable. 

Objects with sufficiently well-behaved currents would be expected to have 

a well-behaved current source-function. If this is the case, then the 

current source-function will be locally integrable, the concept of the 

finite part will not have to be introduced, and consistency conditions 

usually will be satisfied automatically. 

7.1 Maxwell's Equations and the Current Source-Function 

Maxwell's equations are 

8B 

VxE = - — - K (1.1a) 

3D VxH = — — H J (1.1b) — dt — 

V-D = p (1.2a) 

V»B = m (1.2b) 

where IS and II are the electric and magnetic field intensities, J[ and K are 

densities of electric and magnetic currents, and p and m are the electric 

and magnetic charge densities. The charge and current are related by the 
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continuity equations 

V«K 

V'J = -

3m 
3t ' 

3p 
3t ' 

(1.3a) 

(1.3b) 

By combining Maxwell's equations, the currents and fields can be related 

directly. These expressions are 

and 

( c2 3t2 } at e 

(V2 — ) — = - — 
( C2 3t 3t " 

VV-J - — - — J 
2 s.2 -c 3t 

VV-K - K 
c 3t 

+ - V X K (1.4a) 

3t (1.4b) 

If, for example, K = 0, then the IS field is related to the current by 

(V2 - 1 
2 . 2 c 3t 

3E 

at 
1 
e " • i - i b c 3t 

U (1.5) 

where IJ, the current source-function, is given by 

U = VV-J - ~ J. 
c 3t 

(1.6) 

7.2 The Expression for the Current in Terms of the Current Source-Function 

If the current source-function U is known, then the current is given by 

1 9 J = (VxVx + 4r ) [U* 4] 2 . 2 c 3t 
2 » 2 c 3t 

(2.1a) 

[(VxVx + — )U] * 
c 3t 

U * 1 9 (VxVx + — — - )3> 
c 91 -

(2.1b) 

(2.1c) 
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where $ is a solution of the equation 

. 2 

(V2 - -4-§-T )* = 6(r,t) (2.2) 
c 9t 

and [ ] represents a dyadic operator. For harmonic time dependence, 

e (2.1) becomes 

k2J = (-VxVx + k 2)[U*$] (2.3a) 

= [(-VxVx + k2)U] * $ (2.3b) 

= U* [(-VxVx + k2)$] (2.3c) 

where $ is a solution of the equation 

(V2 + k2)$ = 6. (2.4) 

Equations (2.1a) and (2.3a) follow from (1.5) by using 

V-J = - (V-E) (2.5) 

and 
3E 
— = - j [U * 0]. (2.6) o c e 

Equations (2.1b) and (2.3b) may be verified by substituting IJ from (1.6) 

and using 

2 2 
([(V2 - ) F]* cp) - <F* [(V2 - )*]» 

c at c at 

= <F* 6, cp) = <F, cp) (2.7) 

where cp(_r,t) is a testing function in 3 and F is a distribution of finite 

support in the spatial variables and of semi-infinite support along the 
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positive time axis. Equations (2.1c) and (2.3c) follow either from the 

associativity of convolution in distribution theory or from the theory of 

systems of partial differential equations in distribution theory. The 
2 1 3 dyadic inverse of the (VV* j — y ) operator in (1.6) may be found by 

c 3t 
utilizing the concepts presented by Latta (1974, pp. 621-623). Tai (1971) 

discusses similar dyadic Green's functions. 

7.3 Conclusions 

It appears that the direct relation (1.5) between the current and the 

electric field can be used to solve for the current on a scatterer without 

introducing the vector potential, at least for those obstacles with suf-

ficiently well-behaved current distributions. The current source-function 

technique shows promise for treating the time-domain scattering from smooth 

objects. Vector and scalar potentials would not be required. More re-

search needs to be carried out to verify the usefulness of this technique. 
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8. CONCLUSION AND SUGGESTIONS FOR FURTHER DEVELOPMENT 

The current source-function (CSF) technique has been applied to the 

problems of scattering of electromagnetic waves from simple planar obstacles. 

Techniques were developed for treating the singular behavior of the current 

and its source-function when the scatterers have sharp edges. In the case 

of the half-plane, an exact solution was obtained using the CSF technique. 

The currents induced on the half-plane were also obtained by using the 

moment method to solve the CSF integral equation numerically. An attempt 

to solve the strip problem exactly using the CSF technique remains incom-

plete for lack of an even solution of the(homogeneous finite part integral 

equation with proper edge behavior. However, the numerical solution of 

the strip problem using the CSF technique remains to be investigated. 

The CSF technique shows promise for solving integral equations with a 

logarithmic singularity both on the right-hand side and in the kernel. An 
A 

antenna with a 6 gap excitation (i.e. , magnetic current K = 6(z) <5(r-a) <p ) 

produces an electric field with a logarithmic singularity. The CSF tech-

nique also shows promise for handling arrays of scattering or radiating 

objects. The interactions between elements would be accounted for in the 

current source-function which would simplify the moment method solution. 

Once the current source-function was known, the current on an element could 

be found from the current source-function associated with that element 

alone. 

The general nature of the CSF technique has been indicated in a brief 

outline of how a current source-function might be defined for three-

dimensional time-domain problems (Chapter 7). Thus, there are many 
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possibilities for application of the CSF technique which remain to be 

explored. Only after further development will it be possible to make a 

meaningful comparison between the moment method solutions of the CSF inte-

gral equation and the electric field integral equations of Pocklington and 

Hall£n. However, one advantage of the two-step CSF approach is that even 

though the current source-function may be approximated by a discontinuous 

function, the current, being calculated by integration, is continuous. 

Other possible advantages, mentioned previously, such as efficiency due to a 

simpler kernel and fewer basis functions, need to be investigated further. 
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A. ANALYSIS OF ACCURACY 

If a is a numerical approximation to the value of some function whose 

true ("standard") numerical value is s, then, 

Absolute error = 
and 

Relative error = 

s - a 

s - a 

(A. 1) 

(A. 2) 

Relative error is often used when the approximate value a is obtained 

through floating point arithmetic. The exponent scaling present in float-

ing point arithmetic makes relative error the most natural criterion to 

use for describing the accuracy of such a ̂ numerical procedure. The rela-

tive error must not be used when the standard is equal to zero or in the 

neighborhood of zero. This limits the usefulness of relative error. 

By their very nature, some numerical approximations are naturally 

absolute decimal approximations and absolute error criteria must be used. 

Power series, for example, are sometimes of this type. If relative error 

is used instead of the absolute error for such approximations, enormous 

errors are obtained in the vicinity of a null or near-zero. For example, 

if a numerical approximation generates 

a = 0.0003927 

when the true value of the function at that point is 

s = 0.000000721 
then 

Absolute error = 0.000391979 
and 

Relative error = 543.66. 
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This number for relative error is not particularly meaningful and may be 

misunderstood if the values of a and s are not given. The absolute error 

may also be misinterpreted unless the maximum value of the approximated 

function is given. 

The proper choice of using either the relative error or the absolute 

error must often be made by computing both and choosing the most meaning-

ful one. The "typical" or median relative error is used sometimes to 

describe the relative accuracy of a numerical approximation to some func-

tion. This provides a measure of error which is easily understood, but 

eliminates from consideration large relative errors occurring around nulls 

and near-zeroes. 

Hart et al. (1968, p. 162) define 

Precision index = - £ o g , ( A . 3 ) °10 max 

where e is the maximum relative or absolute error. For many of the max 
numerical approximations studied in this work, pointwise, average or median 

relative error is preferred to maximum relative error. For this reason, 

the definition 

Digits of Accuracy = - s - a (A.4) 

is made where s and a are numbers corresponding to a standard approxima-

tion and to an approximation under study, respectively. The "digits of 

accuracy" factor defined above is applicable only at a point and is re-

lated to the pointwise percent error through the ôg-̂ Q function. Its 

name is derived from the fact that it tends to represent the actual number 

of digits for which the approximate value matches the standard value. For 
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example, 2.42 is accurate to 1.3 digits when the standard is 2.54 and 

0.0044721 is accurate to 3.9 digits when the standard is 0.0044716. The 

estimated median digits of accuracy is sometimes used to indicate general 

trends that an approximation to some function exhibits over some finite 

range of arguments. The median is used instead of the maximum because of 

the losses of digits of accuracy occurring at nulls or near-zeroes. If 

it is desired to compare two numbers, neither of which is known to be cor-

rect, then the "number of matching digits" is given. This is obtained by 

assuming that one or the other of the numbers is most correct and using 

it as the standard for the "digits of accuracy". In some cases, an aver-

age of the "digits of accuracy" is used. ' 

For some comparisons, a measure of the number of decimal places of 

accuracy (or of the absolute error) is useful or necessary. For this 

reason, it is helpful to define 

If the decimal offset factor is given, an estimate of the magnitude of the 

standard is obtained from 

A measure of the number of decimal places of accuracy is obtained from the 

equation 

Decimal Offset Factor = - £og1fJs|. (A.5) 

| s | - 10 -Decimal Offset Factor (A. 6) 

Decimal Places of Accuracy = - &ogin |s — a| 

= - (£°g10
 8 3 5 + Aog10|s|) 

= Digits of Accuracy 4- Decimal Offset Factor (A.7) 
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For a standard of 2.54, the decimal offset factor is -0.4 and for a stan-

dard of 0 . 0044716 the decimal offset factor is +2.3. From the above equa-

tion, 2.42 is accurate to 0.9 decimal places with a standard of 2.54 and 

0.0044721 is accurate to 6.3 decimal places with a standard of 0.0044716. 

A measure of decimal places of accuracy which seems to agree with 

visual expectations better than (A.7) is 

Apparent Decimal Places of Accuracy = 

= Digits of Accuracy + Decimal Offset Factor - 0.5. (A.8) 

This is not used in this thesis. Where large groups of data are involved, 

an estimated median decimal offset factor is given. In most cases, the 

decimal places of accuracy figure is given per se. 

The concept of digits of accuracy, decimal offset factor, and decimal 

places of accuracy are quite useful when comparisons between two or more 

approximations to some function are being made. In general, it is suffi-

cient to simply compare the digits of accuracy figures. In certain cases 

where the values of the standards are not close to each other, it is 

necessary to keep the respective decimal offset factors in mind in order 

to obtain a meaningful absolute comparison. Either (A.7) or (A.8) may be 

used for this. 
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B. APPROXIMATIONS TO THE MATRIX ELEMENTS 

The matrix elements for the moment method solution of integral equa-

tions with a Hankel function H Q ^ kernel are integrals of the Hankel 

function weighted with the expansion functions. Numerical approximations 

for these matrix elements have often been made without stating the 

absolute or relative accuracy of these approximations. Excellent approxi-

mations, accurate to at least ten decimal places, for the matrix elements 

are given in the text and will be used as the standards to which the 

approximations given here are compared. The accuracies of the approxima-

tions derived here are given in terms of ''digits of accuracy" and "decimal 

offset factor." These terms are defined and explained in Appendix A. 

Further references and another discussion of matrix element approximation 

for the Hankel function kernel are given by Harrington (1968, pp. 43-44, 

47-49). 

The crudest approximations for the self terms are derived from the 

formula 

JQ(t) - 1 (B.l) 

for small t. Better approximations are derived from the formula 

JQ(t) « cos(t//2) (B.2) 

for small t. Using the fact that 

H^1}(t) = JQ(t) + i(2/ir)[y+Jln(x/2)] JQ(t) + i(4/ir)J2(t) + i0(t4). (B.3) 

and substituting (B.l) and (B.2) in (B.3), one obtains 

H^1}(t) « 1 + ±(2/tt) [y+£n(t/2>] (B.4) 
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and 

H ^ C t ) - cos(t//2) + 1 ( 2 / T T ) [ Y + £n(t/2)] cos(t//2). ( B . 5 ) 

after neglecting higher order terms. Self term approximations given here 

are based on (B.4) and (B.5). 

Matrix element approximations involving the Hankel function with a 

difference argument are derived from the expansion 

CO 

H^1}(D-t) = I H^1}(D)Jk(t) |D| > |t| (B.6) 
k=- » 

as is given by Olver (1964, p. 363). Use of this infinite series allows 

the D and t dependence to be separated. Mutual term approximations given 

here are based on (B.l), (B.2), and (B.6). 

B.1 The Self Terms for a Pulse Basis Function 

Self term matrix elements for pulse expansion functions are propor-

tional to 
H H H 
H^1}(t)dt = JQ(t)dt + i YQ(t)dt (B.7) 

where Jg(t) and Y^(t) are the Bessel functions of the first and second 

kinds. Two numerical approximations to this integral will be compared 

using the approximation given by (2.4) and (2.5) of Chapter 4 as the stan-

dard. Substituting (B.4) and (B.5) in (B.7) yields the approximations 

H 

0 

and 

H^1)(t)dt - H + i(2/tt) [y + £n(H/2) - 1]H (B.8) 
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H 
H^1)(t)dt * /2 sin(H//2) + i(2/Tr)[y + £n(H/2)] Jl sin(H//2) 

- i(2/ir)H [sin (B.9) 

Table B.l summarizes the accuracy of these approximations. (B.8) is good 

to three digits for H less than 0.1. The usefulness of (B.9) is limited 

by its imaginary part which is good to three digits for H less than 0.2. 

In conclusion, it appears that (B.9) gives roughly the same accuracy at 

2H as (B.8) does at H. 

B.2 The Mutual Terms for a Pulse Basis Function 

Mutual term matrix elements for pulse expansion functions are written 

as H 
H^1)(D-t)dt (B.10) 

-H 

where 2H is the subsection width and D = 2nH for n = 1,2,*«*. Several 

approximations to (B.10) are studied. Substituting (B.6) in (B.10), one 

obtains 
H H 
H^1)(D-t)dt = 2 I ,(1). 

-H 
J2k(t)dt (B.11) 

where 

£k = 

k = 0 

k > 0. 
(B.12) 

Retaining the first two terms gives the approximation 

H H H 
H^1)(D-t)dt - 2 H^1}(D) JQ(t)dt + 4 H^1}(D) J2(t)dt. (B.13) 

-H 
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The integral of J2(t) m a y aPProximated by remembering that 

1 2 J2(t) - g- t cos(t//6) (B.14) 

for small t. Integrating by parts and dropping higher order terms, one 

obtains 
H 
J2(t) dt * (H /24) cos(H//6) (B.15) 

0 

for small H. Using this in (B.13) yields the first approximation 
H H 
H^1)(D-t)dt « 2H^1}(D) Jn(t)dt + H ^ C D ) V cos(H//6). (B.16) U Z b 

-H 0 

All of the functions given on the right-hand side of the equal sign are 

evaluated to double precision accuracy using the appropriate subprograms. 

The second approximation is obtained from (B.2) and (B.16) and is 
H 3 
H^1)(D-t)dt = 2/2 H^1}(D) sin(H//2) + H0

(1) (D) ̂ -cos(H//6). (B.17) U U Z D 
-H 

, ( D The third and fourth approximations are obtained by dropping the H2 (D) 

terms in (B.16) and (B.17). These are 
H 
Hq"^ (D-t)dt = (2H)H^1)(D) 

and 
-H 
H 
I 

-H 
Hq"^ (D-t)dt = 2/2 sin(H//2) (D) 

(B.18) 

(B.19) 

The four approximations are compared in Table B.2 by using (2.6) of Chapter 

4 as the standard. Careful study of this table reveals that the imaginary 
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parts for adjacent elements are the least accurate. The expressions (B.16) 

and (B.17) are accurate to almost three digits while (B.18) and (B.19) are 

accurate to almost two digits. For accuracy to three digits, (B.16) or 

(B.17) should be used, if only for adjacent elements. 

A final approximation is derived for the evaluation of adjacent ele-

ments. This is obtained by writing 
H D+H 
H^1}(D-t)dt = H^1}(t)dt -

-H 0 

D-H 
H^1)(t)dt 

0 
(B.20) 

and using either (B.8) or (B.9) to evaluate the integrals on the right. 

Table B.3 gives the accuracy of such a scheme for small H and D. These 

numbers show that (B.20) is slightly better for small D and small H than 

are (B.16) through (B.19), but that the error increases very rapidly as D 

or H is increased. 

B.3 The Self Terms for an Inverse Square Root Basis Function 

The self term due to an inverse square root expansion function is 
H 

-Mi). t y(t)dt. 
0 

Substituting (B.4) and (B.5) in (B.21), one obtains 
H 

and H 
t ^ 1 ) ( t ) d t = 2^2 ReF2(H//2) + 

(B.21) 

| t 2H^1)(t)dt = 2/H (1 + i(2/n)[y + An(H/2)" - 2]) (B.22) 

+ i(4/ir) [ (y + £n^H) 24ReF2(H//2) - 2/2 ReF2(H/2) ] (B.23) 

where F2 is a form of the Fresnel integral and is 
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Table B.3 

Digits of Accuracy and Decimal Offset Factors for 
Pulse Expansion Function Matrix Element Approximations 

for Small H and D 

Approximations to 
H 

(D-t)dt 
-H 

sub-
section 
width 

2H 

D = 2H 

Real Imag. 

D = 4H 

Real Imag. 

0.1 2 . 6 2.4 2.0 1.8 

0.2 2.0 1.8 1.4 1.4 

0.1 6.1 3.0 5.0 2.3 

0.2 4.9 2.3 3.8 1.5 

decimal offset 
factor 

0.1 

0.2 

1.0 

0.7 

0 . 8 

0.7 

1 . 0 

0.7 

1.0 

0.9 

H 
H^1)(D-t)dt = 
-H 

D+H 
H^1}(t)dt 

D-H 
H^1}(t)dt 

x 
1: for Hq"^ (t)dt use Equation (B.8). 

x 
2: for HQ1^(t)dt use Equation (B.9). 



r ^ . 2 
F2(y) 

11: , e dt. 
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(B.24) 
0 

The above approximations are compared in Table B.4 using the Chebyshev 

expansions of (2.12) and (2.13) of Chapter 4 as the standard. Equation 

(B.22) provides three digit accuracy for small H while (B.23) provides 

three digit accuracy for H as large as 0.4. 

B.4 The Mutual Terms for an Inverse Square Root Basis Function 

Mutual terms for an inverse square root expansion function may be 

written as 
H 
t ^Hq"^ (D-t)dt. (B.25) 

Substituting (B.6) in (B.25), one obtains 

H H 
t ^ 1 )(D-t)dt = I e,H>i;(D) 

U k=0 * k 
, ( D t 2Jk(t)dt (B.26) 

where e is defined by (B.12). The first approximation is obtained by 

retaining only the first two terms of the series in (B.26). This yields 
I H 
t"^H^1)(D-t)dt * ^ ( D ) t~^Jn(t)dt + 2H1(1)(D) 

H 
t (t)dt. (B.27) 

The second approximation uses (B.2) and the result 

Jx(t) * | cos(t/2), (B.28) 

for small t, in (B.27) to obtain 
H 
t 2Hq (D-t)dt * 242Hq (D) ReF2(H/»/2) + Y H^ (D) H2COS(H/2). (B.29) 

0 
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The H term arising in integration by parts is neglected. The third and 

fourth approximations are obtained by dropping the H^"^ (D) term in (B.27) 

and using (B.l) and (B.2) for J^(t). These approximations become 
H 
t"tH^1)(D-t)dt ^ 2 H 5 H^1)(D) (B.30) 

0 
and H 

(D-t)dt « 2^2 Hq^ (D) ReF2(H//2). (B.31) 
0 

The accuracy of the approximations (B.27), (B.29), (B.30), and (B.31) is 

compared in Table B.5. The standard for comparison is given by (2.16) of 

Chapter 4. It is clear that none of the 6ne or two term approximations 

are suitable for calculating the imaginary part for adjacent elements to 

three digits. Equations (B.30) and (B.31) appear to be useless for almost 

any D or H. Equations (B.27) and (B.29) may be useful for non-adjacent 

elements, but it too exhibits loss of digits for adjacent elements. This 

certainly limits its usefulness. 
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C. THE CHEBYSHEV APPROXIMATION FOR t 2 H,$1)(t)dt 

The Chebyshev coefficients for the integral 
x /x 
t 2~ H(^1)(t)dt = 2 H^1}(t2)dt (C.l) 

are derived using techniques presented by Luke (1969, Volume I, p. 316). 

For simplicity, the coefficients will be evaluated for x between zero and 

one. The first step is to expand the Hankel function H^"^ (t) in terms of 

Chebyshev polynomials over the range from zero to one. Luke gives 

JQ(ax) = I AnT2n(x), 0 < x < 1, (C.2) 
n=0 

and 00 
Yn(ax) = - [y + £n§(ax)] JA(ax) + Y B T_ (x), 0 < x < 1. (C.3) U IT U „ n zn — n=0 

Luke (1969, Volume II, pp. 37-38) gives expressions for A^ and B^. These 

are 

A n = en(-)n J2(a/2) (C.4) 

and 

„ 2 ^ <"> v e ) (2 ) ( n + a )k n+k 
n 9 L 

TT (n!) k=0 ( n + 1) k (2n+l)k k! 

r 1 
where hQ=0, (k+l)-i|/(1) = I —, ek=2,k>0, £Q=1» (z)^ is Pochhammer s 

r=l 
symbol and ip is the psi function. These coefficients for a = 1 have been 
evaluated and are presented to thirty decimal places in Table C.l. Inte-

I 

grating (C.3) with weighting function t 2, one obtains 
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Table C.l 

The Chebyshev Coefficients for H ^ ( t ) 

oo 

J 0 ( X ) ^ S A n T 2 n ( x ) ° i X < 

n=0 

n A. 
n ¥ 0 .88072 55791 02608 52856 66716 90745 

1 -0 .11738 80111 68324 31940 62454 63926 
2 0 .00187 32125 03719 19483 78708 78204 

3 -0 .00001 31454 22970 29262 10718 29931 
4 0 .00000 00516 72429 66801 43705 31710 
5 -0 .00000 00001 29721 82348 54703 96309 

6 0 .00000 00000 00225 88402 34607 00193 

7 -0 .00000 00000 00000 28876 21352 76806 
8 0 .00000 00000 00000 00028 24848 25625 

9 -0 .00000 00000 00000 00000 02182 69906 

10 0 .00000 00000 00000 00000 00001 36574 

11 -0 .00000 00000 00000 00000 00000 00071 

11 n 
Tj A n = 1 .000000000000000000000000000000 
n=0 

Y 0 (x) = (2/7T) ty + Hn(x/2) ] J Q (x) + ^ B n T 2 n ( x ) 0 < x < 1 
n=0 

n B 
n ¥ 0 07413 80482 27767 97344 91419 78719 

1 0 07235 06431 28333 67004 27035 43214 

2 -0 00177 20598 14423 04775 99324 11845 

3 0 00001 52767 28830 75475 92604 99781 

4 -0 00000 00683 67550 04271 89855 54205 

5 0 00000 00001 88278 03355 02929 41047 

6 -0 00000 00000 00351 94783 94412 02370 

7 0 00000 00000 00000 47628 96435 51147 

8 -0 00000 00000 00000 00048 84890 95181 

9 0 00000 00000 00000 00000 03929 25221 

10 -0 00000 00000 00000 00000 00002 54571 

11 0 00000 00000 00000 00000 00000 00136 

1 1 nT y (—) B = 0.000000000000000000000000000001 
I n. 

n=0 
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| t 2 Y0(t)dt 
0 

— [y + &n§x] IT * J t 2 JQ(t)dt -
X t 
r 1 
t 

0 'o 
y 2 JQ(y)dy dt 

x l 
t 2 y (t)dt (C.6) 

where *s(t) " I B n T 2 n « ' n=0 
(C.7) 

After substituting the Chebyshev series for Jn(x) and y (x) in (C.6), all u s 

of the integrals on the right-hand side reduce to the general form 

x 
t 2 I a T. (t)dt. n 2n n=0 < 

(C.8) 

Integrals of this type have been studied by Luke (1969, Volume I, p. 316), 

among others. It may be shown that 
x 
t _ 2 I an T2n ( t ) d t " ^ I -FT9n(*> n=0 n=0 2 2n (C.9) 

where the e 's are evaluated from the a 's with n n 

and 

3 1 _ 
4 1 2 e0 ~ 0 al 

(n + ! > en+l + (n + I > en a - a ,, n n+1 (C.10) 

with initially set to zero. The coefficients [e^/2] computed in this 

manner for the first integral on the right-hand side of (C.6) are used to 

write the second integral in the form (C.8) also. The coefficients calcu-

lated in this fashion are displayed in Table C.2. These coefficients were 
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Table C.2 

The Chebyshev Coefficients for t 2 H^1}(t)dt 

x 

h t * J Q ( t ) d t = a n T 2 n ( x ) 

n=0 

0 < x < 1 

n a 
n ¥ 1 .95128 14331 93046 58435 50561 29645 

l -0 .04829 48425 46336 80521 03115 22820 

2 0 . 00042 16807 69656 71393 76178 47120 
3 -0 .00000 20373 7032.1 04095 64250 18892 

4 0 .00000 00061 08224 90741 08427 01487 

5 -0 .00000 00000 12395 81278 86654 77329 
6 0 .00000 00000 00018 11537 14831 66561 

7 -0 .00000 00000 00000 01995 24402 67038 
8 0 .00000 00000 00000 00001 71460 49653 
9 -0 .00000 00000 00000 (00000 00118 12785 

10 0 .00000 00000 00000 00000 00000 06669 
11 -0 .00000 00000 00000 00000 00000 00003 

11 

x 

/ • 

£ (—)na = 2 . 000000000000000000000000000002 
n=0 

t 2 YA (t) dt ( 2 / T T ) [ Y + £n(x /2 ) ] 

x 

h t " 2 J 0 ( t ) d t + / x J 2 b n T 2 n ( x ) 

n 

0 

b 
n ¥ -2 .50331 72157 75212 05291 09138 39593 

1 0 .04269 90225 23431 20894 23961 10043 
2 -0 .00046 02718 23386 72610 55595 35412 

3 0 .00000 25707 84757 42030 31143 73364 
4 -0 .00000 00085 44759 42330 75086 87831 
5 0 .00000 00000 18749 35286 34560 71075 

6 -0 .00000 00000 00029 15404 84394 14376 
7 0 .00000 00000 00000 03379 04162 94632 
8 -0 .00000 00000 00000 00003 03142 01976 

9 0 .00000 00000 00000 00000 00216 73013 

10 -0 .00000 00000 00000 00000 00000 12638 
11 0 .00000 00000 00000 00000 00000 00006 

n=0 

0 < x < 1 

TT £ ( - ) n b
n = "7 . 999999999999999999999999999996 

n=0 
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checked for accuracy by comparing the numerical values of the Chebyshev 

series with those of the power series representations for the same inte-

grals evaluated at O.ln, n=0,l, • • • ,10. The two expansions were carried 

out to 32 decimal places and they agreed to at least 31 decimal places for 

all eleven arguments. The power series representations that were used are 

given by Luke (1962, pp. 44-45) as his equations 2.3(1) and 2.3(4). 
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These routines were written by 
Donald Farness Hanson between 
February, 1975 and June, 1975. 

C The following MAIN program solves the classical half-plane 
C problem with plane wave incidence for the E-polarization (E-vector 
C parallel to the edge) current minus the so-called physical optics 
C current, (IE-IPO). This computer program is written in FORTRAN IV 
C for the IBM 360 computer at the University of Illinois. The entire 
C program as given here reguires 129 seconds of IBM 360/75 computer 
C time from beginning to end(29 seconds of compile time; 100 seconds 
C of execution time). It compares a hybrid expansion with a 
C pulse-everywhere expansion for the numerical solution of the 
C integral equation by the method of moments. The hybrid basis 
C function set used is one with a l/SQRT(z) expansion function in a 
C half-width segment at the edge a'nd with 199 full-width pulse 
C expansion functions away from the edge. The pulse-everywhere basis 
C function set used is one with a half-width pulse expansion function 
C at the edge and with full-width pulse expansion functions away from 
C the edge. Matrix elements are evaluated using methods which yield 
C at least 10 decimal place accuracy. The almost-Toeplitz nature of 
C this matrix is utilized by LTPLZ to cut down on reauired computer 
C time. MAIN reserves storage locations for arrays which are passed 
C as arguments through several levels of subprograms. ISPMOM sets up 
C the required matrices and right-hand-side, and LTPLZ uses these 
C matrices to form an inverse and generate the result. PNTOWT takes 
C the result and compares it with the known analytic solution by 
C printing out the respective real parts, imaginary parts, magnitudes, 
C and phases along with their differences. PNTOWT also stores the 
C results on disk for later use. MAIN calls ISPMOM, PULMOM, LTPLZ, 
C and PNTOWT directly and many other subprograms indirectly. Refer to 
C each of these routines for a list of the subprograms that they in 
C turn call. The RESULTS of MAIN must be divided by Z0=376.731 ohms 
C in order to give units of (A/m)/(V/m). 
C 
c 

C Dimension large arrays. 
c 

COMPLEX*16 IH0(200), ISRTH0(200), RHS(800), RESULT(800),Z1(200), 
1 A(200) ,A1 (200) ,IEMPO(200) ,HN1(32) 
REAL*8 JN(88) , JIN(32), SK(88), UN(88), TAD(4) , DEZ, KZ(200), 

1 XNORM, H 
INTEGER NCASES, NSIZE, NH, NMAX, PNTOPT, IER, I 
LOGICAL GORH(88), ROOT 

c 

C Set up angles of incidence for calculation. 
c 

DATA TAD/45.D0, 90.D0, 135.D0, 180.D0 / 
c 

C Set up parameters for run. c 
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NSIZE=200 
DEZ = 10.D0 
NCASES=4 
NH = 32 
NMAX = 85 
PNTOPT = 0 

c 

C Set up matrices for hybrid expansion and evaluate 
C Right-Hand Sides. 
c 

CALL ISPMOM(NCASES,TAD,DEZ,NSIZE,KZ,IH0,TSRTH0,RHS,NH,HNl,NMAX, 
1 JN, JIN, SK, UN, GORH, PNTOPT ) 

C 

C Print values of matrix elements. 
C 

PRINT 1, (KZ (I) , IH0 (I) , ISRTH0(I) , 1 = 1, NSIZE ) 
1 FORMAT('1',T12, 'MATRIX ELEMENTS'//T9, 'x',T35,'IH0',T89,'ISRTH0'/ 
1 (T2,0PF10.3,T13, '<',1PD23.15, ' ,',IX,023.15, '>, ' ,5X, '<',D23.15, 
2 ',1X,D23.15,'>' ) ) , 

c 

C Evaluate (IE-IPO) by matrix inversion for hybrid expansion. 
c : 

CALL LTPLZ( ISRTH0,IH0,Z1,A,A1,NSIZE,RHS,RESULT,NCASES,XNORM,IER) 
IF( IER .ME. 0 ) GO TO 19 
ROOT = .TRUE. 
H = 1.00/(2.D0*DEZ) 

C 

C Print out results for (IE-IPO) for hybrid expansion. 
c 

CALL PNTOWT( TAD, NSIZE, NCASES, KZ, IEMPO, RHS, RESULT, ROOT, H ) 
C 
C Set up matrices for pulse-everywhere expansion. 
c 

CALL PULMOM( OEZ, NSIZE, KZ, IH0, ISRTH0 ) 
C 

C Print values of matrix elements. 
C 

PRINT 1, (KZ (I) , IH0 (I) , ISRTH0(I) , 1 = 1, NSIZE ) 
c 
C Evaluate (IE-IPO) by matrix inversion for pulse-everywhere 
C expansion. 
C 

CALL LTPLZ(ISRTH0,IH0,Z1,A,A1,NSIZE,RHS,RESULT,NCASES,XNORM,IER) 
IF( IER .NE. 0 ) GO TO 10 

C 

C Print out results for (IE-IPO) for pulse-everywhere expansion. 
c 

ROOT = .FALSE. 
CALL PNTOWT( TAD, NSIZE, NCASES, KZ, IEMPO, RHS, RESULT, ROOT, H) 
STOP 

10 PRINT 5 
5 FORMAT('0CAME TO 13 IN MAIN.' ) 

STOP 
END 
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C Subroutine ISPMOM fills the matrices that are required as input 
C to the matrix inversion routine LTPLZ for the hybrid basis function 
C case. These arrays are ISRTH0, IH0, and RHS. All other parameters 
C in the parameter list are either inputs or dimensioned arrays. IH0 
C is an output vector of lenqth NSIZE which is filled with numbers 
C corresponding to the first column of the Toeplitz matrix which 
C results when double-wide pulses are used throughout as basis 
C functions. ISRTH0 is an output vector of length NSIZE which is 
C filled with numbers corresponding to the l/SQRT(z) half-wide initial 
C subsection. RHS is an output array of length NC*NSIZE which is 
C filled with the values of the Right-Hand Side for (IE-IPO) for each 
C of the angles of incidence THETAD=45, 90, 135, and 180. KZ is an 
C output array of length NSIZE and contains the values of the match 
C points. NC, TAD, DEZ, NSIZE, NH, NMAX, and PNTOPT are all input 
C parameters. NC is the number of cases or angles to be 
C considered(NC=4). TAD is an array of the angles and is of length 
C NC. DEZ is one over the subsection width. NSIZE is the number of 
C subsections. NH is the number of terms to be taken in sums of 
C weighted Hankel functions and must b^ 32 or less. NMAX is the 
C number of terms to be taken in sums of Bessel functions. PNTOPT is 
C the underflow/overflow printing option(see HANKEL). HN1 and JIN are 
C arrays of length NH(see GTJN, HANKEL). JN, GORH, SK, and UN are 
C arrays of length NMAX(see BESSEL, SKS, and UNS). ISPMOM directly 
C calls GTJN, SELFTM, SELFSN, SUMINC, IA2BH0, BESSEL, HANKEL, SKS, 
C SUMHJI, and UNS. Refer to each of these routines for a list of the 
C subprograms that each in turn calls. 
c 

SUBROUTINE ISPMOM(NC,TAD,DEZ,NSIZE,KZ,IH0,ISRTH0,RHS,NH,HNl,NMAX, 
1 JN,JIN,SK,UN,GORH,PNTOPT) 
C0MPLEX*16 SELFTM, SELFSN, IH0(1), ISRTH0(1), ESUM, RHS(1),H01, 
1 HN1(1), IA2BH0, SUM, IZIH01 
REAL*8 H, JI0, JIN(1) , ZETA, KZ(1), THETAD, TAD(1) , UPLIM, LOWLIM, 

1 FN, DFLOAT, J0, JN(1), S0, SK(1), UN(1), DEZ, TDEZ 
INTEGER NM, NMAX, PNTOPT, PN, OFFSET, J, NH, N, NPl, NPNP1, NSIZE, 

1 NC, I, NSM1 
LOGICAL GORH(1), T/.TRUE./ 
TDEZ = 2.D0*DEZ 
H = 1.D0/TDEZ 
PN = PNTOPT 
NM = NMAX 
NSM1 = NSIZE-1 

C 
C Calculate values of JIN for later use in SUMHJI. 
c 

CALL GTJN( H, NH, JI0, JIN, PN ) 
ZETA = 0.D0 
KZ(1) = 0.D0 

C 

C Fill IH0 and ISRTH0 matrices. 
c 

IH0(1) = SELFTM(H) 
ISRTH0(1) = SELFSN(H) 
DO 1 J = 1, NC 
OFFSET = (J-l)*NSIZE 
THETAD = TAD(J) 
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CALL SUMINC (ZE'TA, THETAD, 1, UN, JN, S0, SK, ESUM, PN ) 
1 RHS( OFFSET + 1 ) = ESUM 

UPLIM = H 
DO 2 N=1, NSM1 
NPl = N+l 
NPNP1 = N+N+l 
FN = DFLOAT( NPNPl ) 
ZETA = DFLOAT(N)/DEZ 
KZ(NPl) = ZETA 
LOWLIM = UPLIM 
UPLIM = FN/TDEZ 
IH0(NPl) = IA2BH0(LOWLIM, UPLIM ) 

c 

C Calculate matrix element corresponding to l/SORT(z) initial 
C subsection, ISRTH0. c 

CALL HANKEL( ZETA, NH, T, H01, HN1, &100 , PN ) 
CALL SUMHJI( NH, H01, HN1, JI0, JIN, SUM, PN ) 
ISRTH0(NPl) = SUM , 

C 

C Calculate values of the Right-Hand Side. 
c 

CALL BESSEL( ZETA, NM, GORH, J0, JN, &100, PN ) 
CALL SKS( ZETA, NM, S0, SK, PN ) 
DO 2 J=l, NC 
OFFSET = (J-l)*NSIZE 
THETAD = TAD(J) 
CALL UNS( THETAD, NM, UN ) 
CALL SUMINC( ZETA, THETAD, NM, UN, JN, S0, SK, ESUM, PN ) 

2 RHS( OFFSET+NP1) = ESUM 
RETURN 

100 PRINT 3 
3 FORMAT( '0FROM ISPMOM, WENT TO 100.' ) 

STOP 
END 
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C Subroutine PULMOM fills the matrices that are required as input 
C to the matrix inversion routine LTPLZ for the pulse-everywhere basis 
C function case. DEZ, NSIZE, and KZ are inputs and IH0 and IHWH0 are 
C outputs. DEZ is one over delta z, the subsection width. NSIZE is 
C the number of subsections. KZ is an array of length NSIZE of the 
C match points. IH0 is the same as in ISPMOM. IHWH0 is an array of 
C length NSIZE filled with numbers corresponding to the half-width 
C pulse initial subsection. PULMOM directly calls SELFTM and IA2BH0. 
C Refer to these routines for a list of their called subprograms. 
c 

SUBROUTINE PULMOM( DEZ, NSIZE, KZ, IH0, IHWH0 ) 
INTEGER NSIZE 
COMPLEX*16 IH0(NSIZE), IHWH0(NSIZE), SELFTM, IZIH01, IA2BH0 
REAL*8 DEZ, KZ(NSIZE), H, FN, DFLOAT, ZETA, LOWLIM, UPLIM 
INTEGER I, N, NPl, NPNP1, NSM1, OFFSET 
H = 1.D0/(2.D0*DEZ) 

c 

C Fill IH0 and IHWH0. c T 

IH0(1) = SELFTM(H) 
IHWH0(1) = IH0(1)/2.D0 
UPLIM = H 
NSM1 = NSIZE - 1 
DO 2 N=1, NSM1 
NPl = N+l 
NPNP1 = N+N+l 
FN = DFLOAT( NPNP1 ) 
ZETA = KZ( NPl ) 
LOWLIM = UPLIM 
UPLIM = FN/(2.D0*DEZ) 
IH0(NPl) = IA2BH0( LOWLIM, UPLIM ) 

2 IHWH0( NPl ) = IA2BH0( ZETA-H, ZETA ) 
RETURN 
END 
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C Subroutine SUMHJI calculates a matrix element associated with 
C the 1/SQRT(z) edge expansion function for the hybrid case. SUM is 
C given by 
C 
C NMAX 
C SUM = JI0*H01 + 2 I (JIN*HN1) 
C N=1 
C 
C where JI0 and JIN are the outputs of GTJN, and H01 and HNl are the 
C outputs of HANKEL. NMAX must be 1 or more, but 32 or less(see 
C HANKEL). PNTOPT is the underflow printing option(see HANKEL). 
C SUMHJI calls UNDRFL. 
C 

SUBROUTINE SUMHJI(NMAX, H01, HNl, JI0, JIN, SUM, PNTOPT ) 
C0MPLEX*16 SUM, H01, HNl(l), S(2), CBAR, ZERO/(0.D0,0.D0)/ 
REAL* 8 JI0, JIN (1) , CC(2) 
INTEGER NMAX, KB, K, PNTOPT, PNTOP 
LOGICAL UFL 
EQUIVALENCE( CBAR, CC ) 
EXTERNAL UNDRFL 
COMMON/$2/ UFL 
COMMON/$3/ PNTOP 
UFL = .FALSE. 
PNTOP = PNTOPT 
IF( PNTOP-1 ) 100, 102, 100 

100 CALL ERRSET( 208, 320, -1, 1, UNDRFL ) 
GO TO 1 

102 CALL ERRSET( 208, 320, 0, 0, UNDRFL ) 
1 UFL = .TRUE. 

S(1) = JI0*H01 
S(2) = ZERO 

c 

C Sum in the BACKWARD direction. c 

DO 2 K=1, NMAX 
KB = NMAX - K + 1 

C 
C If JIN is zero, do not sum for this K. 
C 

IF( JIN(KB) .EQ. 0.D0 ) GO TO 2 
C 

C If the overflow flag for the imaginary part of HNl is detected, 
C skip this term. 
c 

CBAR = HNl(KB) 
IF ( CC (2) .EQ. -1.D70 ) GO TO 2 
S (2) = S(2) + HNl(KB)*JIN(KB) 

2 CONTINUE 
UFL = .FALSE. 
SUM = S(1) + S(2) + S(2) 
RETURN 
END 
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C Subroutine SUMINC evaluates the right-hand side for (IE-IPO) 
C for a given displacement X and angle of incidence THETAD. The 
C right-hand side is evaluated as sums of Chebyshev polynomials UN 
C weighted with Bessel functions JN and with a function whose name was 
C coined as S. ESUM is evaluated using eauations 10.3(3) and 
C 10.3(10), pages 239 and 240, of Luke's, "Integrals of Bessel 
C Functions." UN is the output array of UNS for angle THETAD. JN 
C is the output array of BESSEL and S0 and SK are the outputs of SKS. 
C Refer to these routines for the details. PNTOPT is the underflow 
C printing option(see HANKEL). NMAX is the number of terms to be 
C taken and must be 2 or more. Accurate results to about 10 decimal 
C places are generated for NMAX=85 and X=20. Results for X between 20 
C and 40 are accurate to at least one decimal place when NMAX=85. 
C SUMINC calls UNDRFL. 
C 

SUBROUTINE SUMINC( X, THETAD, NMAX, UN, JN, S0, SK, ESUM, PNTOPT ) 
C0MPLEX*16 DCMPLX, ESUM, T1, T2, IB, 1/(0.D0,1.D0)/, 

1 ZERO/(0.D0,0.D0)/ 
REAL* 8 X, THETAD, UN(1) , JN(1), S0, SK(1), SJ(2), SY(2), DLOG, 
1 DABS, DSIN, DCOS, PRODJ, PRODY, THETA, CTA, STA, ARG 
REAL*8 TWOOPI/0.63661977236758134308D0/, 
1 GAMMA/0.577215664901532860 61D0/,PI/3.14159265358979323846D0/ 
INTEGER NMAX, KB, K, PNTOPT, PNTOP, NMM1, MOD, LI 
LOGICAL UFL 
EXTERNAL UNDRFL 
COMMON/$2/ UFL 
COMMON/$3/ PNTOP 
IF( X .EQ. 0.D0 ) GO TO 7 
UFL = .FALSE. 
PNTOP = PNTOPT 
IF( PNTOP-1 ) 100, 102, 100 

100 CALL ERRSET( 208, 320, -1, 1, UNDRFL ) 
GO TO 1 

102 CALL ERRSET( 208, 320, 0, 0, UNDRFL ) 
1 NMM1 = NMAX-1 

SJ(1) = 0.D0 
SY(1) = 0.D0 
SJ(2) = 0.D0 
SY(2) = 0.D0 

C 

C Perform sums in BACKWARD direction. 
c 

DO 6 K = 1, NMM1 
KB = NMM1-K+1 
UFL = .TRUE. 
PRODJ = UN(KB)*JN(KB+1) 
PRODY = UN(KB)*SK(KB) 
UFL = .FALSE. 

C 

C Treat i**K by making appropriate jumps. 
C 

LI = MOD(KB, 4 ) + 1 
GO TO (2,3, 4,5), LI 
PRINT 10 

10 FORMAT('0 ' , 75X, 'BAD GO TO IN SUMINC.' ) 
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STOP 
2 SJ(1) = SJ(1) + PRODJ 

SY (1) = SY (1) + PRODY 
GO TO 6 

3 SJ (2) = SJ (2) - PRODJ 
SY (2) = SY (2) - PRODY 
GO TO 6 

4 SJ(1) = SJ(1) - PRODJ 
SY (1) = SY (1) - PRODY 
GO TO 6 

5 SJ (2) = SJ (2) + PRODJ 
SY (2) = SY (2) + PRODY 

6 CONTINUE 
SJ(1) = SJ(1) + JN (1) 
SY (1) = SY (1) + S0 

C Complete the evaluation of ESUM. 
c 

THETA = (THETAD/180.D0)* PI , 
CTA = DCOS( THETA ) 
IF( THETAD .EQ. 90.D0 ) CTA = 0.D0 
STA = DSIN( THETA ) 
T1 = DCMPLX( SJ(1), SJ(2) ) 
T2 = DCMPLX( SY(1), SY(2) ) 
IB = Tl+TWOOPI* I*((GAMMA+DLOG(X/2.D0))*T1 - T2 ) 
ARG = X*CTA 
ESUM = 4. D0*( (THETAD/180. D0) *DCMPLX ( DCOS (ARG) ,-D-SIN (ARG) ) - STA*IB) 
RETURN 

C 

C Treat the special case X=0. 
c 

7 ESUM = DCMPLX( 4.D0*(THETAD/180.D0), 0.D0 ) 
RETURN 
END 
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C Subroutine UNS evaluates the Chebyshev polynomials 
C UN( cos(THETA) ) for N from one to NMAX (U0(cos(THETA))=1). The 
C recursion relation 3.5.1(14) from Luke's book, "The Special 
C Functions and Their Approximations" is used. The result accumulates 
C error quickly, so special measures were taken to insure 10 decimal 
C place accuracy for NMAX up to 85 and for any THETA between 0 and 180 
C degrees which is an exact multiple of 15 degrees. THETA is the 
C angle of incidence in degrees. NMAX is the order of the highest 
C order Chebyshev polynomial to be found. UN is an array of length 
C NMAX containing the values of UN( cos(THETA) ). These numbers are 
C used in SUMINC. UNS is complete by itself. It calls no other 
C subprograms. 
c 1 

SUBROUTINE UNS( THETA, NMAX, UN ) 
REAL*8 THETA, X, DCOS, F, UN(1) , TA, RTA 
REAL*8 PI/3 .141592653589793D0/ 
INTEGER NMAX, I, ITHETA, MOD, ICHECK 
RTA = PI*(THETA/180.00) 
X = CCOS(RTA) i 
UN(1) = X + X 
IF( THETA .EQ. 90.D0 ) UN(1) = 0.00 
IF ( NMAX .EQ. 1) RETURN 
F = UN(1) 
UN(2) = F*F - 1.D0 
IF( THETA .EQ. 60 .00 ) UN(2) = 0. D0 
IF( NMAX .EQ. 2 ) RETURN 

C 
C Determine if THETA is a multiple of 15. 
C-

ITHETA = THETA 
TA = ITHETA 
IF( (THETA-TA) .NE. 0.D0 ) GO TO 2 
IF( MOD(ITHETA, 15) .NE. 0 .OR. MOD(ITHETA,180) .EQ. 0 ) GO TO 2 
ICHECK = ITHETA + ITHETA + ITHETA C 

C Evaluate UN for THETA multiple of 15. 
r. 

DO 1 1=3, NMAX 
ICHECK = ICHECK + ITHETA 
UN(I) = F * UN(I-1) - UN(1-2) 
IF( MOD(ICHECK, 180) .EQ. 0 ) UN(I) = 0.D0 

1 CONTINUE 
RETURN 

c 

C Evaluate UN for THETA not a multiple of 15, 
c 

2 DO 3 I = 3, NMAX 
3 t)N(I) = F*UN (1-1) - UN (1-2) 

RETURN 
END 
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C Subroutine SKS evaluates the terms which don't depend on THETA 
C of the non-logarithmic term of the integral from zero to X of 
C exp(itcos(THETA))Y0(t)dt as given by 10.3(10a) on page 240 of Luke's 
C "Integrals of Bessel Functions." This is an infinite power series 
C depending on m and k(see Luke). The function name was coined to be 
C S(K,X). S0 is the value of this function for K=0 and SK is an array 
C of values for K from 1 to NMAX. These numbers are used in SUMINC. 
C For X less than 20, NMAX should be at least 51 for convergence. 
C PNTOPT is the underflow printing option(see HANKEL). SKS was 
C checked by comparison of these results with those obtained by 
C expanding S in a series of Bessel functions, eq. 10.3 (10b) of Luke. 
C SKS calls UNDRFL. 
c 

SUBROUTINE SKS( X, NMAX, S0, SK, PNTOPT ) 
REAL*8 X, S0, SK(1) , KFACTR, HMF, X02, X02SQ, H0, FK, H, P, 

1 MFACTR, FM, FMKl, DABS , DFLOAT 
INTEGER NMAX, PNTOPT, PNTOP, KP1, K , M, NMP1 
EXTERNAL UNDRFL 
LOGICAL UFL , 
COMMON/$2/ UFL 
C0MM0N/$3/ PNTOP 
UFL = .FALSE. 
PNTOP = PNTOPT 
IF( PNTOP - 1 ) 100, 102, 100 

100 CALL ERRSET(208, 320, -1, 1, UNDRFL ) 
GO TO 1 

102 CALL ERRSET( 208, 320, 0, 0, UNDRFL ) 
1 NMP1 = NMAX+1 
X02 = X/2.D0 
X02SQ = X02*X02 
KFACTR = 1.D0 
H0 = 0.D0 
DO 5 KP1 = 1, NMP1 
K = KPl - 1 
FK = DFLOAT(K) 
IF( KFACTR .EQ. 0.D0 ) GO TO 3 
H0 = H0 + 1.D0/(FK+1.D0) 
H = H0 
P = H0 
MFACTR = 1.D0 
M=1 

2 FM = DFLOAT(M) 
FMKl = FM+FK+1.D0 
H = H + 1.D0/FMK1 
MFACTR = -MFACTR*(X02SQ/(FM*FMKl) ) 
HMF = H*MFACTR 
P = P + HMF 

C 
C Test for convergence to 15 decimal places. 
c 

IF( DABS( HMF ) .LT. l.D-15 ) GO TO 3 
M = M + 1 
GO TO 2 

3 UFL = .TRUE. 
KFACTR = KFACTR*(X02/(FK+1.D0) ) 
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UFL = .FALSE. 
c 

C Catch underflow before it occurs(possibly). 
c 

IF( DABS(KFACTR) .LT. l.D-70) KFACTR = 0.D0 
IF( K .NE. 0 ) GO TO 4 
S0 = P*KFACTR 
GO TO 5 

4 SK(K) = P*KFACTR 
5 CONTINUE 

RETURN 
END 
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C Function I0XH01 evaluates the integral from zero to X of 
C H01(t)dt using Chebyshev polynomials as given in Table 27 on page 
C 334 of Volume II of Luke's book, "The Special Functions and Their 
C Approximations." This routine is used to evaluate elements in the 
C matrix for pulse expansion functions. I0XH01 is used by IA2BH0, 
C IZIH01, and SELFTM." I0XH01 calls EAT2P1. 
c 

COMPLEX FUNCTION I0XH01*16(X) 
IMPLICIT REAL*8 (D) 
COMPLEX*16 DCMPLX 
REAL*8 XX, X, X08, GAMMA, TWOOPI, IJ0, SUMY, A(17), B(17) 
DATA A/0.00150D-15, -0.09949D-15, 5.79477D-15, -0.0029408710D-10, 
1 0.1286892765D-10, -4.7960704238D-10, 0.001500207418186D-5, 
2 -0.038695337761818D-5, 0.805230017147464D-5, -13.148973200727470D 
3-5, 0.00162455576482273217D0, -0.01444107253850054169D0, 
4 0.08576038744155828731D0, -0.30180691211699830875D0, 
5 0.50821888566078927112D0, -0.36520274074158537488D0, 
1 1 .29671754121052984167D0/,B/0.00324D-15, -0.21031D-15, 
2 11.99595D-15, -0.0059495975D-10, 0>2537749742D-10, 
3 -9.1898449486D-10, 0.002781957053702D-5, -0.069083540549799D-5, 
4 1.374382109086322D-5, -21.244292114418655D-5, 
5 0.00244754014990944840D0, -0.01978679701180859820D0, 
6 0.10180664216242309366D0, -0.27450260739390063315D0, 
7 0.19604604501712995275D0, 0.16 707193818110339620D0, 
8 1.52325892745358903192D0/ 
DATA TWOOPI/0.63661977236758134308D0/, 

1 GAMMA/0.577 21566490153286 0 61D0/ 
XX = DABS(X) 
IF( XX .GT. 8.D0 ) GO TO 2 
IF( XX .EQ. 0.D0 ) GO TO 1 
X08 = XX*0.125D0 

c 

C Sum the Chebyshev series. 
C 

CALL EAT2P1(X08, 16, A, IJ0 ) 
CALL EAT2P1( X08, 16, B, SUMY ) 
I0XH01 = DCMPLX(IJ0, TWOOPI*(GAMMA+DLOG(XX*0.5D0) )*IJ0-SUMY ) 
RETURN 

c 

C Treat the special case X=0. C 
1 I0XH01 = DCMPLX( 0.D0, 0.D0 ) 

RETURN 
c 

C STOP if X is greater than 8. c 

2 PRINT 3, XX 
3 FORMAT('0 ' ,70X, 'I0XH01 WAS CALLED WITH ARGUMENT X=',G20.12,'.'//) 

STOP 
END 
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C Function IZIH01 evaluates the integral from X to infinity of 
C H01(t)dt using Chebyshev polynomials as given in Table 27 on page 
C 335 of Volume II of Luke's book, "The Special Functions and Their 
C Approximations." This routine is used to evaluate elements in the 
C matrix for pulse expansion functions. IZIH01 is used by IA2BH0. 
C IZIH01 calls EATSTR. 
c 

COMPLEX FUNCTION IZIH01*16(X) 
IMPLICIT REAL*8(D) 
COMPLEX*16 DCMPLX, I0XH01, IOZ, EOR, ONE/(1.D0,0.D0)/ 
REAL*8 XX, X, FOX, PI04, R20PI, XPPI04, RC(26), IC(26), RECT, IECT 
DATA RC/-0.03489D-15, 0.16683D-15, -0.51320D-15, 1.07730D-15, 

1-0.80559D-15, -5.70713D-15, 36.07236D-15,-127.37706D-15, 
2 288.66165D-15, -151.48359D-15, -0.0242797151D-10, 
3 0.1490480479D-10, -0.5151791688D-10, 0.8916779341D-10, 
4 2.3353692269D-10, -27.8292764282D-10, 128.5294903326D-10, 
5 -268.5706468353D-10, -0.010699959818439D-5, 0.141140889467207D-5, 
6-0.682861017202808D-5,-0.208371347609414D-5,36.927699265513937D-5, 
7 -0 .00327411179733924011D0, -0,.01622955223898783538D0, 
8 0.987407615814 88 426 270D0/, IC/ -0.05463D-15,0.07387D-15, 
1 0.09161D-15,-1.06 27 2D-15, 4.39396D-15 , -12.15265D-15, 
2 19.76575D-15,17.95082D-15, -292.98739D-15, 0.0133843845D-10, 
3 -0.0382166065D-10, 0.0480015078D-10, 0.2163344301D-10, 
4 -1.8616117165D-10, 7.5741249246D-10,-15.3672496861D-10, 
5 -37.89 06 53 9485D-10,0.005344509822653D-5,-0.0 26476639696766D-5, 
6 0.043762392901943D-5, 0.496153 3 956 28297D-5,-5.462157649813484D-5, 
7 0.19647777633032259D-3, 0.240 40 4107087261157D-2, 
8 -0.05561793742411522950D0, -0.05776667474099451444D0 / 
DATA PIO4/.78539 816 3397 44 8 30 96 2D0/,R2OPI/.79 7884 560 80 28653 5588D0/ 
XX = DABS(X) 
IF( XX .LT. 7.D0 ) GO TO 1 
XPPI04 = XX+PI04 
EOR = R20PI*DCMPLX(DCOS(XPPI04),DSIN(XPPI04))/DSQRT(XX) 
FOX = 5.D0/XX 

c 

C Sum the Chebyshev series. c 

CALL EATSTR( FOX, 25, RC, RECT ) 
CALL EATSTR( FOX, 25, IC, IECT ) 
IZIH01 = EOR*DCMPLX(RECT, IECT) 
RETURN 

c 

C Treat the case when X is less than 7. c 

1 IOZ = I0XH01(XX) 
IZIH01 = ONE-IOZ 
RETURN 
END 
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C Function IA2BH0 evaluates matrix elements for pulse expansion 
C functions by taking the difference between I0XH01 evaluated at B and 
C A or between IZIH01 evaluated at A and B. Approximately two decimal 
C places of accuracy are lost in taking this difference for B=A+0.1. 
C More or less decimal places will be lost depending on the actual 
C relation between A and B. IA2BH0 is used by ISPMOM and PULMOM. 
C IA2BH0 calls either IZIH01 or I0XH01. 
c 

COMPLEX FUNCTION IA2BH0*16(A, B) 
COMPLEX*16 X, Y, IZIH01, I0XH01 
REAL*8 A, B, AA, BB, DABS 
AA = DABS(A) 
BB = DABS(B) 
I = IDINT(AA*0.14D0 ) 
J = IDINT( BB*0.14D0 ) 

c 

C Check to see if A and B are greater or less than 7. 
c 

IF( I+J .EQ. 0 ) GO TO 027 * 
7200 X = IZIH01(AA) 

Y = IZIH01(BB) 
IA2BH0 = X-Y 
RETURN 

027 X = I0XH01(BB) 
Y = I0XH01(AA) 
IA2BH0 = X-Y 
RETURN 
END 

C Function SELFTM evaluates the self terms for the double-wide 
C pulse expansion functions of width 2A with match point in the 
C center. SELFTM is used by ISPMOM and PULMOM. c 

COMPLEX FUNCTION SELFTM*16(A) 
COMPLEX*16 X, IZIH01, I0XH01, ONE/(1.D0,0.D0)/, TWO/(2.D0,0.D0)/ 
REAL*8 A, AA, DABS 
AA = DABS( A ) 
I = IDINT( AA*0.14D0 ) 
IF( I .EQ. 0 ) GO TO 027 

7200 X = IZIH01(AA) 
SELFTM = TWO*(ONE-X) 
RETURN 

027 SELFTM = TWO*I0XH01(AA) 
RETURN 
END 
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C Function SELFSN evaluates the integ 
C (1/SQRT(t))H01(t)dt. The Chebyshev coeff 
C methods given by Luke in "The Special 
C Approximations." The coefficients are given 
C SELFSN is used in ISPMOM. 

ral from 0 to H of 
icients were derived by 
Functions and Their 
elsewhere in this work. 

COMPLEX FUNCTION SELFSN*16(H) 
COMPLEX*16 DCMPLX 
REAL*8 DSQRT, H, A(7), B(7), GAMMA, 
DATA A/ 0.00000000000001811537D0, 

1 0.00000000610822490741D0, 
2 0.00042168076965671394D0, 
3 1.95128143319304658436D0 
DATA 3/ -0.00000000000002915405D0, 

1 -0.00000000854475942331D0, 
2 -0.00046027182338672611D0, 
3 -2.50331721577521205291D0 
DATA TWOOPI/0.63661977236758134308D0/, 

1 GAMMA/0.577215664901532860 61D0/ 
IF( H .EQ. 0.D0 ) GO TO 2 
IF( H .GT. 1.D0 ) GO TO 10 
HSQ = H*H 

TWOOPI 
-0. 
-0. 
-0. 
/ 
0. 
0. 
0. 

, DLOG, Y(2) , HSQ 
00000000001239581279D0, 
00000203737032104096D0, 
04829484254633680521D0 , 

00000000 001874935286D0 , 
00000257078475742030D0, 
04269902252343120894D0, 

r 
C-

Perform evaluation of Chebyshev series. 

CALL EATSTR( HSQ, 6, A, Y(l) ) 
CALL EATSTR( HSQ, 6, B, Y(2) ) 
SELFSN=DCMPLX(Y(1),TWOOPI*(GAMMA+DLOG(H/2.D0))*Y(1)+Y(2))*DSQRT(H) 
RETURN 

2 SELFSN= DCMPLX( 0.D0, 0.D0 ) 
RETURN 

10 PRINT 1, H 
1 FORMAT( '0', 75X, 'SELFSN WAS CALLED WITH ARG=', 1PD12.4/) 

STOP 
END 
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C Subroutine GTJN is used in evaluating matrix elements for the 
C 1/SQRT(z) expansion function present in the hybrid expansion and is 
C used with SUMHJI and HANKEI,. GTJN evaluates the integral from 0 to 
C H of (1/SQRT(t))JN(t)dt for N from 0 to NMAX. ITJ0 is the value for 
C N=0 and ITJN is an array of length NMAX which contains the values 
C for N=1 to NMAX. PNTOPT is the underflow printing option(see 
C HANKEL). The power series expansion given by 2.2(1) on page 44 of 
C Luke's, "Integrals of Bessel Functions" is used for these 
C evaluations. Numbers were checked by comparison of this oower 
C series with Luke's equivalent expansion in series of Bessel 
C functions, eq. 2.4(1), page 51 of "Integrals of Bessel Functions." 
C GTJN calls UNDRFL and EATSTR. c 

SUBROUTINE GTJN( H, NMAX, ITJ0, ITJN, PNTOPT ) 
REAL*8 ITJ0, ITJN(1), H, H02, H02SQ, P, Q, R, DSQRT, SH, AK, AN, 

1 DFLOAT, QP, DABS, A(7) 
INTEGER N, K, NMAX, PNTOPT, PNTOP 
LOGICAL UFL 
COMMON/$2/ UFL 
COMMON/?3/ PNTOP 
DATA A/ 0 .00000000000001811537D0, 

1 0.00000000610822490741D0, 
2 0.00042168076965671394D0, 
3 1.95128143319304658436D0 
PNTOP = PNTOPT 
IF ( PNTOP-1 ) 100 , 102 , 100 

130 CALL ERRSET( 208, 32, -1, 1, UNDRFL ) 
GO TO 104 

102 CALL ERRSET( 208, 32, 0, 0, UNDRFL ) 
104 R = H*H 

SH = DSQRT(H) 
HO2 = H/2.D0 
H02SQ = H02*H02 

C 
C If H is greater than 1.D0, STOP. 
c 

IF( H .GT. 1.D0 ) GO TO 10 c 

C Evaluate ITJ0 in a series of Chebyshev polynomials. c 

CALL EATSTR( R, 6, A, ITJ0 ) 
ITJ0 = ITJ0 * SH 
IF( NMAX .EQ. 0 ) RETURN 
P = 1.D0 
UFL = .TRUE. 
DO 4 N=1, NMAX 
AN = DFLOAT(N) 
P = P*H02/AN 
R = 2.D0/(AN+AN+1.D0) 
Q = 1.D0 
K=1 

2 AK = DFLOAT(K) 
Q = -Q*H02SQ/(AK*(AN+AK)) 
QP = Q/(AK+AK+AN+0.5D0) 
R=R+QP 

-0 .000 00000 001239581279D0, 
-0 .00000203737032104096D0, 
-0 .0 482948425463368 0521D0, 
/ 
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c 

C Check for convergence to 15 decimal places. 
c 

IF( DABS(OP) .LT. l.D-15 ) GO TO 3 
K=K+1 
GO TO 2 

3 ITJN(N) = SH*P*R 
C 

C Catch underflow before it occurs(possibly). 
c 1 

IF( DABS( ITJN(N) ) .GT. l.D-70 ) GO TO 4 
ITJN(N) = 0.D0 
P=0.D0 
Q=0.D0 
R=0.D0 

4 CONTINUE 
UFL = .FALSE. 
RETURN 

10 PRINT 1, H 
1 FORMAT( '0', 7 5X, 'GTJN WAS CALLED * WITH ARG=', 1PD12.4/) 

STOP 
END 
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C Subroutine BESSEL evaluates the Bessel functions JN for 
C argument X and for orders N from zero through NMAX. BESSEL is used 
C in ISPMOM to provide values for SUMINC. Extreme numerical problems 
C occur when the recurrence relation is used directly in the forward 
C direction. For this reason, the recurrence relation is used in the 
C backward direction to form a continued fraction expansion. The 
C details are too lengthy to describe here. The method is due to G. 
C Blanch, "SIAM Review", V.6, no. 4, Oct. 1964. GORH is a logical 
C array of length NMAX that is required by Blanch's method. J0 is the 
C value of J0 and JN is an array of length NMAX containing the values 
C of JN for N from 1 to NMAX. * is a label to where the calling 
C program should jump when either X or NMAX is less than zero. PNTOPT 
C is the underflow printing option(see HANKEL). BESSEL is accurate to 
C at least 12 decimal places. BESSEL calls UNDRFL, H01S, H11S, and 
C GORHVU. 
r 

SUBROUTINE BESSEL( X, NMAX, GORH, J0, JN, *, PNTOPT ) 
IMPLICIT REAL*8(A-H, O-Z, $), INTEGER( I-N ) 
COMPLEX*16 H01S, H11S, HC 
REAL*8 J0, JN(1), F(2) i 
INTEGER V, PNTOPT, PNTOP, VP1 
LOGICAL GORH(1), LP, UFL 
EQUIVALENCE( HC, F ) 
EXTERNAL UNDRFL 
COMMON/$2/ UFL 
COMMON/$3/ PNTOP 
UFL = .FALSE. 
DO 1 I = 1, NMAX 

1 GORH(I) = .FALSE. 
NM = NMAX 
NMM1 = NM-1 
XX = X 
PNTOP = PNTOPT 
IF( XX.LT. 0.D0 .OR. NM.LT. 0 ) RETURN1 
IF ( XX .EQ. 0.D0 ) GO TO 44 

Evaluate J0 using Chebyshev polynomial expansion. 

HC = H01S (XX) 
J0 = F(1) 
IF( NM .EQ. 0 ) RETURN 

Evaluate JN(1) using Chebyshev polynomial expansion. 

HC = HllS(XX) 
JN(1) = F(1) 
IF ( NM .EQ. 1 ) 
A = 2.D0/XX 

RETURN 

A maximum of 32 underflows may occur before program termination. 

IF( PNTOP-1 ) 100, 102, 100 
100 CALL ERRSET( 208, 32, -1, 1, UNDRFL ) 

GO TO 8 
102 CALL ERRSET( 208, 32, 0, 0, UNDRFL ) 



208 

Computer Program for H-polarization Half-Plane Current. Page 10 

8 J = IDINT( XX ) 
IF( J .LT. NM ) J = NM 
I = J 

10 M = I 
IF( A*DFL0AT(I) .GE. 2.5D0 ) GO TO 12 
1 = 1 + 1 
GO TO 10 

NPJCNV is N+J such that convergence is obtained. See Blanch 
paper. 

12 N = M + 5 
P = 0.D0 
NPJCNV = M 

14 N = N+ 5 
Q = P 
P = 0.D0 
DO 15 J = NPJCNV, N 
Ml = N + NPJCNV - J 

15 P = 1.D0/(DFLOAT(Ml)*A - P) 
16 IF( DABS(P-Q) .GT. (l.D-15)*DABS(P) ) GO TO 14 

GHP = P 
LP = .FALSE. 
NPJM1 = NPJCNV - 1 
IF( NPJCNV .EQ. NM ) GO TO 20 
Evaluate G(NMAX) or H(NMAX) from G(NPJCNV). See Blanch paper. 
DO 18 J = NM, NPJM1 
Ml = NM + NPJM1 - J 

18 CALL GORHVU( Ml, A, GHP, LP ) 
20 JN(NM) = GHP 

GORH(NM) = LP 
IF(NM .EQ. 2) GO TO 24 
DO 22 J=3, NM 
Ml = NM+3-J 
M1M1 = Ml-1 
GHP = JN(Ml) 
LP = GORH(Ml) 
CALL GORHVU( M1M1, A, GHP, LP ) 
JN(MlMl) = GHP 

2 2 GORH(MlMl) = LP 
C 
C Evaluate JN(2). See Blanch paper. 
c 

24 UFL = .TRUE. 
IF( GORH(2) ) GO TO 26 
JN(2) = JN(1)*JN(2) 
GO TO 29 

26 IF( DABS(J0) .GT. DABS(JN(1) ) ) GO TO 28 
JN (2) = JN(1)/JN(2) 
GO TO 29 

28 JN(2) = J0/(JN(2)*A - 1.D0 ) 
29 IF( DABS(JN(2) ) .LT. l.D-70) JN(2) = 0.D0 
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C 

C Evaluate JN(VPl), VP1=3,...,NMAX. See Blanch paper. 
c 

DO 36 V = 2, NMM1 
VPl = V+l 
IF( GORH(VPl) ) GO TO 30 
JN(VPl) = JN(V)*JN(VPl) 
GO TO 34 

30 IF( DABS(JN(V-l) ) .GT. DABS(JN(V)) ) GO TO 32 
JN(VPl) = JN(V)/JN(VPl) 
GO TO 3 4 

32 JN(VPl) = JN(V-l)/(JN(VPl)*A*DFLOAT(V) - 1.D0) 
C 

C Abort possible later underflows. 
c 

34 IF( DABS(JN(VPl) ) .LT. l.D-70 ) JN(VPl) = 0.D0 
36 CONTINUE 

UFL = .FALSE. 
RETURN 1 

C 

C Treat the special case X=0. 
C 

44 P=0.D0 
J0 = 1.D0 
DO 4 5 V=1, NM 

45 JN(V) = P 
RETURN 
END 
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C Subroutine HANKEL evaluates the Hankel functions HNl for 
C argument X and for orders N from zero through NMAX. HANKEL is used 
C in ISPMOM to provide values for SUMHJI. In the following, 
C HN1=J(n)+iY(n). The recurrence relation is used for the J's from 
C J(2) through J(K=X) and Blanch's continued fraction method is used 
C for the J's from J(K=X) through J(NMAX)(see BESSEL). The recurrence 
C relation is used for all Y's from Y(2) through Y(NMAX). Should 
C overflow occur the resultant Y and all higher order Y's are set to 
C -1.D70. Due to internal array dimensioning NMAX must be 32 or 
C less(BESSEL was written to avoid this). JORH is the JN or HNl 
C return option: JORH = .TRUE.: Return the Hankel functions HNl; 
C JORH = .FALSE.: Return the Bessel functions JN and set YN to zero. 
C H01 is the value of H01. HNl is an array of values of HNl(X) for N 
C from one to NMAX. * is a label to which the calling program jumps 
C when either X or NMAX is less than zero. PNTOPT is the 
C overflow/underflow printing option: 
C PNTOPT=0: Print nothing; PNTOPT=l: Print complete statistics; 
C PNTOPT=2: Print one liner. 
C HANKEL is accurate to at least 12 decimal places. HANKEL calls 
C UNDRFL, OVERFL, H01S, H11S, and GORHVU. 
c 

SUBROUTINE HANKEL( X, NMAX, JORH, H01, HNl, *, PNTOPT ) 
IMPLICIT REAL*8(A-H, O-Z, $), INTEGER( I-N ) 
COMPLEX*16 DCMPLX, H01, HN1{1 ), H01S, H11S, HC 
REAL*8 JN(33) , YN(33), GH(33), F(2) 
INTEGER V, PNTOPT, PNTOP, VP1 
LOGICAL GCRH(33), OBOY, YLOOP, LP, UFL, JORH, JORHS 
EQUIVALENCE( HC, F ) 
EXTERNAL OVERFL, UNDRFL 
COMMON/$l/ OBOY, YLOOP 
COMMON/$2/ UFL 
COMMON/$3/ PNTOP 
OBOY = .FALSE. 
YLOOP = .FALSE. 
UFL = .FALSE. 
DO 1 I = 1, 33 

1 GORH(I) = .FALSE. 
NM = NMAX 
NMPl = NM+1 
XX = X 
JORHS = JORH 
PNTOP = PNTOPT 
IF( XX.LT. 0.D0 .OR. NM.LT. 0 ) RETURNl 
IF ( XX .EQ. 0.D0 ) GO TO 44 
K = IDINT( XX ) 
IF ( K .GT. NM ) K=NM 

C 

C Evaluate H01 using Chebyshev polynomial expansion. 
C 

H01 = H01S(XX) 
HC = H01 
JN(1) = F(1) 
YN (1) = F (2) 
IF( NM .EQ. 0 ) RETURN 
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c 

C Evaluate Hll using Chebyshev polynomial expansion. 
c 

HN1(1) = HllS(XX) 
HC = HN1(1) 
JN (2) = F (1) 
YN(2) = F (2) 
IF( NM .EQ. 1 ) RETURN 
A = 2.D0/XX 
KM1 = K-l 
IF( KM1 .LT. 1 ) GO TO 4 

c 

C Evaluate the J's up to J(K=X) using the recurrence relation. 
c 

6 DO 7 V = 1, KM1 
AV = DFLOAT( V ) 

7 JN(V+2) = JN(V+l)*A*AV - JN(V) 
4 IF( K .EQ. NM ) GO TO 32 

C , 
C A maximum of 32 underflows may occur before program termination. 
c 1 

IF( PNTOP-1 ) 100, 102, 100 
100 CALL ERRSET( 208, 32, -1, 1, UNDRFL ) 

GO TO 8 
102 CALL ERRSET( 208, 32, 0, 0, UNDRFL ) 

C 

C Evaluate the rest of the j's by Blanch's method. 
c 

8 J = IDINT( XX ) 
IF ( J .LT. NM ) J = NM 
I = J 

10 M = I 
IF( A*DFLOAT(I) .GE. 2.5D0 ) GO TO 12 
1 = 1 + 1 
GO TO 10 

C 

C NPJCNV is N+J such that convergence is obtained. See Blanch 
C paper. 
c 

12 N = M + 5 
P = 0.D0 
NPJCNV = M 

14 N = N+ 5 
Q = P 
P = 0.D0 
DO 15 J = NPJCNV, N 
Ml = N + NPJCNV - J 

15 P = l.D0/(DFLOAT(Ml)*A - P) 
16 IF( DABS(P-Q) .GT. (1.D-l5)*DABS(P) ) GO TO 14 

GHP = P 
LP = .FALSE. 
NPJM1 = NPJCNV - 1 
IF( NPJCNV .EQ. NM ) GO TO 20 
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C Evaluate G(NMAX) or H(NMAX) from G(NPJCNV). See Blanch paper. 

DO 18 J = NM, NPJMl 
Ml = NM + NPJMl - J 

18 CALL GORHVU( Ml, A, GHP, LP ) 
20 GH(NMPl) = GHP 

GORH( NMPl ) = LP 
KPl = K+l 
KP2 = K+2 
IF( KP2 .GT. NM ) GO TO 24 
DO 22 J = KP2, NM 
Ml = NM + KP2 - J 
MlPI = Ml+1 
MlMl = Ml-1 
GHP = GH(MlPi) 
LP=GORH(MlPI) 
CALL GORHVU( MlMl, A, GHP, LP ) 
GH(Ml) = GHP , 

22 GORH(Ml) = LP 
24 UFL = .TRUE. 

DO 30 V = KPl, NM 
IF( V .LE. 1 ) GO TO 30 
VP1 = V+l 
IF( GORH(VPl) ) GO TO 26 
JN( VP1 ) = JN(V)*GH(VP1) 
GO TO 29 

26 IF( DABS(JN(V-l)) .GT. DABS( JN(V) ) ) GO TO 28 
JN(VPl) = JN(V)/GH(VP1) 
GO TO 29 

28 JN(VPl) = JN(V-l)/(GH(VP1)*A*DFLOAT(V) - 1 . D0 ) 
Abort possible later underflows. 

29 IF( DABS( JN(VPl) ) .LT. l.D-70 ) JN(VPl) = 0.D0 
30 CONTINUE 
32 UFL = .FALSE. 

11 = 3 
IF( JORHS ) GO TO 105 
DO 10 3 J = 1, NMPl 

103 YN(J) = 0.D0 
H01 = DCMPLX(JN(1) , YN(1) ) 
HNl(1) = DCMPLX( JN ( 2) , YN(2) ) 
GO TO 40 

A maximum of 32 overflows may occur before program termination. 

105 IF( PNTOP-1 ) 104, 106, 104 
104 CALL ERRSET( 207, 32, -1, 1, OVERFL ) 

GO TO 33 
106 CALL ERRSET( 20 7, 32, 0, 0, OVERFL ) 
33 YLOOP = .TRUE. 
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C Evaluate the Y's using the recurrence relation. 
C 

DO 34 J = 2, NM 
II = J+l 
YN(I1) = YN(J)*A*DFLOAT(J-l) - YN(J-l) 

C Catch first overflow and set subsequent Y's to -1.D70. 
c 

IF( OBOY ) GO TO 36 
IF( DABS(YN(II) ) .GT. 1.D70 ) GO TO 36 

34 CONTINUE 
YLOOP = .FALSE. 
GO TO 40 

36 DO 38 J = II, NMPl 
38 YN(J) = -1.D70 

YLOOP = .FALSE. 
OBOY = .FALSE. 

C Evaluate the Hankel functions to be returned. 

40 DO 42 J = 2, NM 
JPl = J+l 

42 HN1(J) = DCMPLX( JN(JPl), YN(JPl) ) 
RETURN 

C 

C Treat the special case X=0. 
r 

44 P = 1.D0 
Q = 0.D0 
A = -1.D70 
H01 = DCMPLX( P, A ) 
DO 4 5 J = 1, NM 

4 5 HN1(J) = DCMPLX( Q, A ) 
RETURN 
END 
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C Subroutine GORHVU is required as part of Blanch's method given 
C in "SIAM Review", V. 6, no. ' 4 , Oct. 1964. It is used in BESSEL and 
C HANKEL. For further details, see the 31anch paper. 
c 

SUBROUTINE GORHVU( K, A, GH, L ) 
REAL*8 GH, A, BK, YD, ZD, DABS, DFLOAT, HI 
INTEGER K 
LOGICAL L 
BK = A*DFLOAT(K) 
IF(L) GO TO 10 
YD = 3K-GH 
IF(DABS(BK) .GE. 2.D0 ) GO TO 1 
IF( DABS(YD) .GT. 1.D0 ) GO TO 1 
L = .TRUE. 
GH = YD 
RETURN 

1 L = .FALSE. 
GH = 1.D0/YD 
RETURN , 

10 ZD = BK*GH - 1.D0 
HI = GH 
IF( DABS(ZD) .GE. DABS(GH) ) GO TO 100 
L = .TRUE. 
GH = ZD/HI 
RETURN 

100 L = .FALSE. 
GH = HI/ZD 
RETURN 
END 
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C Subroutine UNDRFL is called when an underflow occurs. If an 
C underflow occurs when UFL is .TRUE., the result register will be set 
C to zero and program execution will continue. Otherwise, the program 
C will terminate. D is the result register. I is a dummy variable. 
C UNDRFL is used in BESSEL, HANKEL, GTJN, SKS, SUMINC, and SUMHJI. c 

SUBROUTINE UNDRFL( D, I ) 
REAL*8 D 
INTEGER PNTOPT 
LOGICAL UFL 
COMMON/$2/ UFL 
COMMON/$3/ PNTOPT 
IF( PNTOPT .GE. 2 ) PRINT 1 

1 FORMAT( ' ', 75X, 'UNDERFLOW OCCURRED. RESULT REGISTER WAS SET TO 
1 ZERO.' ) 
D = 0.D0 
IF( UFL ) RETURN 
CALL ERRSET( 208, 1 , 0 , 0 ) 
STOP , 
END 

C Subroutine OVERFL is called when an overflow occurs. If an 
C overflow occurs when YLOOP is .TRUE., the result register will be 
C set to -1.D70, OBOY will be set to .TRUE., and program execution 
C will continue. Otherwise, the program will terminate. D is the 
C result register. I is a dummy variable. OVERFL is used in HANKEL. 
C 

SUBROUTINE OVERFL(D, I ) 
REAL*8 D 
INTEGER PNTOPT 
LOGICAL OBOY, YLOOP 
COMMON/$1/ OBOY, YLOOP 
COMMON/$3/ PNTOPT 
OBOY = .TRUE. 
IF( PNTOPT .GE. 2 ) PRINT 1 

1 FORMAT( ' ', 75X, 'OVERFLOW OCCURRED. RESULT REGISTER WAS SET TO 
1-1.D70.' ) 
D = -1.D70 
IF ( YLOOP ) RETURN 
CALL ERRSET( 207, 1 , 0 , 0 ) 
STOP 
END 
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C Function H01S evaluates the Hankel function H01 for argument X. 
C A Chebyshev polynomial expansion is used for X less than 7 and 
C another is used for X greater than 7. The coefficients are from 
C Table 25 on page 331 of Volume II of Luke's book, "The Special 
C Functions and Their Approximations." The routine is called by 
C HANKEL and BESSEL. 
C 

COMPLEX FUNCTION H01S*16(X) 
C0MPLEX*16 DCMPLX, DIST 
REAL* 8 X, XX, DABS, A (16) , B(16), CR(16), CI(16), DSQRT, FOX, 

1 OOSRTX, AGL, DLOG, RECT, IECT, X08, X2, EAT, EBT, PI04, R20PI, 
2 TWOOPI, GAMMA, DSIN, DCOS 
DATA PIO4/0.7853981633974483D0/, R20P1/0.7978845608028654D0/, 
1 TWOOPI/0.6366197723675813D0/, GAMMA/0.5772156649015329D0/ 
DATA A/-0.758D-15, 0.00041253D-10, -0.01943835D-10,0.78486963D-10, 

1 -0.0002679253530D-5, 0.0076081635924D-5,-0.1761946907762D-5, 
2 3.2460328821005D-5,-0.000460626166206275D0,0.004819180069467604D0 
3,-0.0 34893769411408885D0,0.158067102332097261D0, 
4 -0.37009499387264 977D0,0.2651786132033 3680D0, 
5 -0.00872344235285222D0, 0.15772797147489011D0 / 
DATA B/l.58D-15, -84.42D-15,0.03882867D-10,-1.5258285D-10, 

1 50.5105437D-10,-0.013845718123D-5,0.307649328810D-5, 
2 -5.392507972293D-5,71.911740375230D-5,-0.00693228629152318D0, 
3 0.04462137954066928D0, -0.16563598171365041D0, 
4 0.23425274610902180D0, 0.19860563470255416D0, 
5 -0.27511813304351879D0, -0.02150511144965755D0 / 
DATA CR/0.59D-15, -3.61D-15, 8.73D-15, 41.91D-15, -0.0055909D-10, 

1 0.0253535D-10,0.0323797D-10, -1.3915619D-10,9.2676248D-10, 
2 14.5492807D-10, -0.009077010153D-5, 0.069154234914D-5, 
3 0 .8511232210656D-5,-0.00031878987806189D0 , -0 .00133842854997185D0 
4 , 0.99898808985896515D0 / 
DATA CI/0.46D-15, 0.75D-15, -16.77D-15, 92.31D-15, -0.0012255D-10, 

1 -0.0230489D-10, 0.2169571D-10, -0.6062738D-10, -6.8334751D-10, 
2 96.4642133D-10, -0.002724405341D-5, -0.085180664442D-5, 
3 1.365557049035D-5, 9.649418499342D-5, 
4 -0.01224949628125947D0, -0.01233152057854414D0 / 
XX = DABS(X) 
IF( XX .LT. 7.D0 ) GO TO 1 
OOSRTX = 1.D0/DSQRT( XX ) 
AGL = XX - PI04 
DIST = 00SRTX*R20PI*DCMPLX( DCOS(AGL), DSIN(AGL) ) 
FOX = 5.D0/XX 

C--
C Sum the Chebyshev series. 
r 

CALL EATSTR( FOX, 15, CR, RECT ) 
CALL EATSTR( FOX, 15, CI, IECT ) 
H01S = DCMPLX( RECT, IECT )*DIST 
RETURN 

1 IF( XX .EQ. 0.D0 ) GO TO 2 
X08 = 0.125D0*XX 
X2 = X08 *X08 

c 

C Sum the Chebyshev series. 
c 
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CALL EATSTR( X2, 15, A, EAT ) 
CALL EATSTR( X2, 15, B, EBT ) 
H01S = DCMPLX( EAT, TWOOPI*(GAMMA+DLOG(0.5D0*XX))*EAT + EBT ) 
RETURN 

C 
C Treat the special case X=0. 
r 

2 H01S = DCMPLX( 1.D0, -1.D70 ) 
RETURN 
END 

C Function H11S evaluates the Hankel function Hll for argument X. 
C A Chebyshev polynomial expansion is used for X less than 7 and 
C another is used for X greater than 7. The coefficients are from 
C Table 26 on pages 332 and 333 of Volume II of Luke's book, "The 
C Special Functions and Their Approximations." The routine is called 
C by HANKEL and BESSEL. 
C 

COMPLEX FUNCTION H11S*16(X) 
C0MPLEX*16 DCMPLX, DIST 
REAL*8 X, XX, DABS, DSQRT, DLOG, X08, DR(16), DI(16), A(16), 

1 C (16) , OOSRTX, FOX, EAT, REDT, IEDT, ECT, PI04, R20PI, TWOOPI, 
2 GAMMA, TPI04, AGL, DSIN, DCOS 
DATA PIO4/0.7 3 539 816 3397 44 8 3D0/,R2OPI/0.79 7 884 560 8 0 28654D0/, 
1 TWOOPI/0.6366197723675813D0/, GAMMA/0.5772156649015329D0/ 
DATA A /-0.096D-15, 5.59D-15, -0.0028317D-10,0.1235175D-10, 
1 -4.5857003D-10, 0.001427732438D-5, -0.036613085523D-5, 
2 0.756263022969D-5, -12.227868505432D-5,0.00148991289666763D0, 
3 -0 .01296762731173517D0, 0 .07426679621678703D0, 
4 -0.24186740844740748D0, 0.31327508236156718D0, 
5 0.04809646915823037D0, 0.05245819033465648D0 / 
DATA C/ 0.20D-15, -0.0001157D-10, 0.0057261D-10, -0.2434327D-10, 

1 8.7803011D-10, -0.002645073717D-5, 0.065284795235D-5, 
2 -1.288585329924D-5, 19.706230270154D-5, -0.00223561929448509D0, 
3 0 .01763670300316313D0, -0 .08667169705694852D0, 
4 0.20664454101749051D0, -0.02271924442841773D0, 
5 -0.44444714763055806D0, -0.04017294654441407D0 / 
DATA DR/ -0.63D-15, 3.97D-15,-10.132D-15, -43.161D-15, 
1 0.0061781D-10, -0.0293217D-10, -0.0283045D-10, 1.5763723D-10, 
2 -11.1490594D-10 , -12.9439892D-10 , 0 .011103267712D-5, 
3 -0 .094690138239D-5 , -1 .117946189540D-5 , 54 . 321648750801D-5, 
4 0.00225557284656117D0, 1.00170223485382100D0 / 
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DATA DI/ -0.52D-15, -0.70D-15, 18.12D-15, -103.38D-15, 
1 0.0015619D-10, 0.0249389D-10, -0.2475278D-10,0.7547607D-10, 
2 7.5973309D-10, -0.001162872327D-5,0.003830526171D-5, 
3 0 .107001405738D-5 , -1 .985129468759D-5 ,-13 .726323820190D-5, 
4 0 .03714532247980768D0 , 0 .03726171500053755D0 / 
TPI04 = 3.D0*PIO4 
XX = DABS(X) 
IF( XX .LT. 7.D0 ) GO TO 1 
OOSRTX = 1.D0/DSQRT( XX ) 
AGL = XX - TPI04 
DIST = 00SRTX*R20PI*DCMPLX( DCOS(AGL), DSIN(AGL) ) 
FOX = 5.D0/XX 

C 

C Sum the Chebyshev series. c 

CALL EATSTR( FOX, 15, DR, REDT ) 
CALL EATSTR( FOX, 15, DI, IEDT ) 
H11S = DIST*DCMPLX( REDT, IEDT ) 
RETURN , 

1 IF( XX .EQ. 0.D0 ) GO TO 2 
X08 = XX*0.125D0 

c 

C Sum the Chebyshev series. 
r 

CALL EAT2P1( X08, 15, A, EAT ) 
CALL EAT2P1( X08, 15, C, ECT ) 
H11S = DCMPLX( EAT, TWOOPI*(GAMMA+DLOG(0.5D0*XX)) *EAT-TWOOPI/XX+ 

1 ECT ) 
RETURN 

C 

C Treat the special case X=0. 
c 

2 H11S = DCMPLX( 0.D0, -1.D70 ) 
RETURN 
END 
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C Subroutine EAT2P1 evaluates the Chebyshev series: Y = Sum of 
C A(k)T(2k+1)(X) over k from zero to N for argument X. "E" in EAT2P1 
C denotes Sigma(Sum of). N is the upper index of the summation. The 
C index goes from zero to N. N+l coefficients are required. A is the 
C coefficient vector of length N+l written in REVERSE order: A(N), 
C A(N-l),...,A(0). Y is the result of the sum. The recurrence 
C algorithm is given on page 329 of Volume I of Luke's book, "The 
C Special Functions and Their Approximations." 
C 1 

SUBROUTINE EAT2P1( X, N, A, Y ) 
REAL*8 X, Ml), Y, U, PA, PB, PC, XX 
INTEGER N, I, NN 
XX = X 
U = 4.D0*XX*XX -2.D0 
PB = 0.D0 
PA = 0.D0 
NN = N+l 
DO 1 I = 1, NN 
PC = U*PB - PA + A(I) * 
PA = PB 

1 PB = PC 
Y = XX*(PB-PA) 
RETURN 
END 

C Subroutine EATSTR evaluates the Chebyshev series: Y = Sum of 
C A(k)T*(k)(X) over k from zero to N with argument X, or the Chebyshev 
C series: Y = Sum of A(k)T(2k)(X) over k from zero to N for argument 
C X when the routine is called with argument X*X (X-squared) instead 
C of X. N is the upper index of summation. The index goes from zero 
C to N. N+l coefficients are required. A is the coefficient vector 
C of length N+l written in REVERSE order: A (N) , A(N-l) ,...,A(0) . Y 
C is the result of the sum. The recurrence algorithm is given on page 
C 329 of Volume I of Luke's book, "The Special Functions and Their 
C Approximations." 
C 

SUBROUTINE EATSTR( X, N, A, Y ) 
REAL*8 X, A(1) , Y, U, PA, PB, PC, XX 
INTEGER N, I, NN 
XX = X u = 4.D0 *XX -2. D0 
PB = 0.D0 
PA = 0.D0 
NN = N 
DO 1 1 = 1, NN 
PC = U*PB - PA + A (I) 
PA = PB 1 PB = PC 
Y = : 2.D0 *XX *PB - (PA+PB) 
RETURN 
END 
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C Subroutine LTPLZ finds the solution vector VOUT for an 
C almost-Toeplitz matrix whose first (Left) column is different from 
C what it would be if the matrix were completely Toeplitz. ZTAU is 
C the input vector of values for the left column. TAU is the input 
C vector of the values that the left-most column would take on if the 
C matrix were completely Toeplitz. If T is the Toeplitz matrix 
C corresponding to TAU, and if ZTAM and TAM are matrices whose 
C left-most columns are ZTAU and TAU, respectively, and whose other 
C columns are all zero, then the matrix equation may be written as 
C ( T + (ZTAM - TAM) )VOUT = VIN. 
C Zl, A, and A1 are working storage vectors and are each of length NZ. 
C NZ is the order of the matrix system. VIN is a one-dimensional 
C vector of length (NZ*MM) containing the MM concatenated excitation 
C vectors. VOUT is a one-dimensional vector of length (N Z * MM) 
C containing the MM concatenated solution vectors. MM is the number 
C of excitation and solution vectors. XNORM is the infinite norm of 
C the inverse of the Toeplitz matrix T(not of T+(ZTAM-TAM)). IER is 
C an error code returned: IER=0 means no error; IER=N means an error 
C occurred on the N'th iteration of working vector A. Both TAU and 
C ZTAU are destroyed. LTPLZ was modified from TPLZ which was written 
C by Chuck Klein. The basic Toeplitz algorithm is due to D. H. 
C Preis, IEEE Transactions on Antennas and Propagation, V. AP-20, 
C 1972, Page 204. 
C 

SUBROUTINE LTPLZ(ZTAU,TAU,Zl,A,A1,NZ,VIN,VOUT,MM,XNORM,IER) 
IMPLICIT COMPLEX*16 (A-H,0-Z) 
COMPLEX*16 ZTAU(NZ) ,TAU(NZ) ,Z1(1) ,A(1) ,A1(1) ,VIN(1) ,VOUT(l) 
COMPLEX*16 ONE/(1D0,0D0)/,ZERO/(0D0,0D0)/ 
REAL* 8 ONNE/1D0/,ZRRO/0D0 / 
REAL*8 XNM,XNORM 

C 

C Take the difference between ZTAU and TAU and store the result in 
C ZTAU. 
c 

DO 100 11=1,NZ 
100 ZTAU(II) = ZTAU(II) - TAU(II) 

N=NZ-1 
IER=0 

c 

C Normalize input matrix TAU by dividing all elements by TAU(l). 
c 

TAU1=TAU(1) 
DO 2000 11 = 1,N 

20 0 0 TAU(II)=TAU(I1+1)/TAU1 
r 
C Calculate the i terative variables to obtain A(N) and ALMDA. 
c 

ALMDA=0NE - TAU(1)*TAU(1) 
A(1)=-TAU(1) 
1 = 2 

1 KK=I-1 
ALPHA=ZERO 
DO 2 M=1,KK 
LL=I-M 

2 ALPHA=ALPHA+A(M)*TAU(LL) 
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ALPHA=-(ALPHA+TAU(I)) 
IF ( CDABS(ALPHA) .EQ. 0.D0) GO TO 15 
COEF=ALPHA/ALMDA 
ALMDA=ALMDA-COEF*ALPHA 
DO'3 J=1,KK 
L=I-J 

3 A1(J)=A(J)+COEF*A(L) 
DO 7 J=1,KK 

7 A(J)=A1(J) 
A(I)=COEF 
IF (I .GE. N) GO TO 5 

4 1=1+1 
GO TO 1 

C 
C Compute the values of each element of the inverse of T. c 

5 NH=(NZ+1)/2 
FAC=ALMDA*TAUl 
XNORM=ZRRO * 
NP=NZ+1 
DO 51 1=1,NH 
XNM=ZRRO 
IF(I .NE. 1) GO TO 52 
A1 (1)= ONE/FAC 
XNM=CDABS(A1(1)) 
DO 53 J=2,NZ 
A1(J)=A(J-l)/FAC 

53 XNM=CDABS(A1(J))+XNM 
GO TO 54 

52 XNM=ZRRO 
C1=A(1-1) 
C2=A(NP-I) 
DO 55 JJ=1,N 
J=NP-JJ 
A1(J)= A1(J-1) + (C1*A(J-1)-C2*A(NP-J))/FAC 

55 XNM=CDABS(A1(J))+XNM 
A1 (1)=A(I-1)/FAC 
XNM=XNM+CDABS(A1(1) ) 

54 IF(XNM .GT. XNORM) XNORM=XNM 
C 

C Obtain Z1 from ZTAU' and A1 by matrix multiplication. 
C (ZTAU' = ZTAU - TAU) . c 

V=ZERO 
VI = ZERO 
DO 60 J=1,NZ 
V2 = ZTAU(J) 
V = V+V2*A1(J) 

50 VI = V1+V2*A1(NP-J) 
Z1 (I)=V 
Zl(NP-I) = VI 

C 
C Evaluate VOUT due to the completely Toeplitz matrix T for each 
C input excitation vector. c 
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DO 56 11=1,MM 
ID=(II-1)*NZ 
V=ZERO 
V1=ZER0 
DO 57 J=1,NZ 
V2=VIN(ID+J) 
V=V+V2*A1(J) 

57 Vl=Vl+V2*Al(NP-J) 
VOUT(ID+I )=V 

56 VOUT(ID+NP-I )=V1 
51 CONTINUE 

C Modify VOUT as required to arrive at the solution for the 
C almost-Toeplitz matrix using Zl calculated above. 
C 

DO 62 II = 1, MM 
ID = (II-l)*NZ 
V = VOUT(ID+1)/(0NE+Z1(1) ) 
VOUT(ID+1) = V i 
DO 62 J=2, NZ 

62 VOUT(ID+J) = VOUT(ID+J) - (Z1(J)*V) 
RETURN 

15 PRINT 700 
700 FORMAT('0',75X,'ERROR HAS OCCURRED. MATRIX IS NOT STRONGLY NONSIN 

1G. '/) 
IER=I 
RETURN 
END 
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C Subroutine PNTOWT calculates the "exact" current (IE-IPO) and 
C compares it with the approximate solution obtained by the method of 
C moments. TAD, NSIZE, NCASES, KZ, RHS, RESULT, ROOT, and H are 
C inputs. IEMPO is a dimensioned array of length NSIZE which is 
C filled with the "exact" values of (IE-IPO) for each match point KZ. 
C RHS, TAD, NSIZE, NCASES, and KZ are the same as RHS, TAD, NSIZE, NC, 
C and KZ as described in ISPMOM. RESULT is an array of length 
C NCASES*NSIZE which contains the values of (IE-IPO) obtained by the 
C method of moments. ROOT is a logical variable which must be 
C .TRUE, for PNTOWT to handle the hybrid case and .FALSE, to handle 
C the Dulse case. H is the half-subsection width. PNTOWT calls 
C XIEMPO and SEP directly. 
C 

SUBROUTINE PNTOWT(TAD,NSIZE,NCASES,KZ,IEMPO,RHS,RESULT,ROOT,H) 
COMPLEX*16 IEMPO(1),EXACT,ANS,DIFF,RESULT(1),RHS(1),COEFF,SP(20) 
REAL*8 KZ(]) , TAD(1) , H, Z(20), DFLOAT, DSQRT, THETAD, DELZ, AX(4) 

1, AA(4) , ZM(3,4) 
INTEGER NCASES, NSIZE, J, K, IC(4)/' RE=', IM=', 'MAG=','AGL='/, 

1 JJ, KI<, OFFSET \ 
LOGICAL ROOT 
DO 3 J=l, NCASES 
OFFSET = (J-l )*NSIZE 
THETAD = TAD(J) 

r* 
v_ 

C Obtain array of "exact" (IE-IPO); store in IEMPO. 
C CALL XIEMPO( NSIZE, KZ, THETAD, IEMPO ) 
C 

C Write results in appropriate disk file: ROOT=.TRUE. for hybrid 
C expansion; ROOT=.FALSE, for pulse expansion. c 

IF( ROOT ) GO TO 21 
WRITE(22) THETAD, NSIZE, H, (KZ (K) , K=l, NSIZE), 
1 (RESULT(OFFSET+K),K=1,NSIZE ) 
GO TO 20 

21 WRITE(21) THETAD, H, (KZ (K) ,K=1,NSIZE) ,(IEMPO(K) ,K = 1,NSIZE) 
1 , (RHS(OFFSET+K),K=1,NSIZE), (RESULT(OFFSET+K),K=1,NSIZE) 

20 PRINT 5, THETAD 
5 FORMAT('1','THETAD=',F9.2//T4,'KZ',T18,'EXACT',T38,'ANS',T55, 
1 'DIFF', T76,'EXACT',T96,'ANS',T113,'DIFF' ) 

C 

C Compare "exact" with moment solution and print results. c 

DO 2 K=1, NSIZE 
EXACT = IEMPO(K) 
ANS = RESULT( OFFSET + K) c 

C Separate EXACT, ANS into real part, imaginary part, magnitude and 
C phase, A(l), A(2), A(3), and A(4), respectively. 
c 

CALL SEP( EXACT, AX ) 
CALL SEP( ANS, AA ) 
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DO 10 1=1, 4 
ZM(1,1) = AX(I) 
ZM(2, I) = AA(I) 

10 ZM(3, I) = AX(I) - AA(I) 
2 PRINT 4, KZ (K) , (IC (I) , ( ZM (,JJ , I) , JJ = 1, 3 ) , 1 = 1, 4) , RHS (OFFSET+K) 
4 FORMAT(' ',T2,0PF7.4,T9,2(A4,'<',1PD17.10,'/',D17.10,'>',D17.10, 
1 2X)/T9,A4,'<',D17.10,'/',D17.10,'>',D17.10,2X,A4,'<',0PF17.10, 
2 '/',F17.10,'>',F17.10/T71,'RHS=(',1PD23.15,',',IX,D23.15,');' ) 

C 
C Print out selected values across the 1/SQRT subsection, if 
C applicable. 
c 1 

IF ( .NOT. ROOT ) GO TO 3 
COEFF = RESULT( OFFSET + 1 ) 
PRINT 12 , COEFF 

12 FORMAT('0',5X,'COEFF=(',1PD23.15,',',2X,D23.15,') ) 
DELZ = H/20.D0 
DO 7 JJ=1, 20 

7 Z(JJ) = DELZ*DFLOAT(JJ) 
CALL XIEMPO(20, Z, THETAD, SP ) 
DO 6 JJ = 1, 20 
EXACT = SP(JJ) 
ANS = COEFF/DSQRT(Z(JJ)) 
CALL SEP( EXACT, AX ) 
CALL SEP( ANS, AA ) 
DO 8 K=1, 4 
ZM(1,K) = AX(K) 
ZM(2,K) = AA(K) 

8 ZM(3,K) = AX(K) - AA(K) 
6 PRINT 4, Z(JJ), (IC(I) , (ZM(K,I) ,K=1,3) ,1=1,4) 
3 CONTINUE 

RETURN 
END 
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C Subroutine XIEMPO calculates the "exact" half-plane current, 
C (IE-IPO), from the well-known analytic result, for NSIZE points. KZ 
C is an array of length NSIZE containing the values of argument for 
C which (IE-IPO) is to be found. THETAD is the angle of incidence in 
C degrees. IEMPO is an array of length NSIZE containing the values of 
C (IE-IPO) corresponding to arguments KZ. XIEMPO calls FRESNL and is 
C called by PNTOWT. 
c 

SUBROUTINE XIEMPO( NSIZE, KZ, THETAD, IEMPO ) 
COMPLEX*16 DCMPLX, IEMPO(l), FRESNL, IEIKZ, SEKC 
REAL*8 KZ (1) , X, THETAD, THETA, TA02, DCOS, DSIN, STA, STA2 , 

1 CTA2, CTA, TSRX,PI, PI04, SRTPI, DSQRT, XP4, XCP4, CTA2SQ, XC 
DATA PI/3.14159 265358979323846D0/, 
1SRTPI/I.77 24 53 8 50 9055160 2730D0/,PIO4/0.78 539 8163397 44 8 30 96 2D0/ 
INTEGER NSIZE, NS, I 
THETA = (THETAD/18 0.D0)* PI 
TA02 = THETA/2.D0 
CTA = DCOS( THETA ) 
STA = DSIN( THETA ) , 
IF( THETAD .EQ. 180.D0 ) STA = 0.D0 
STA2 = DSIN( TA02 ) 
CTA2 = DCOS( TA02 ) 
IF( THETAD .EQ. 180.D0 ) CTA2 = 0.D0 
CTA2SQ = CTA2*CTA2 
DO 1 I = 1, NSIZE 
X = KZ(I) 
IF( X .NE. 0.D0 ) GO TO 2 
IEMPO(I) = DCMPLX( 1.D70, 1.D70 ) 
GO TO 1 

2 TSRX = DSQRT(2.D0*X) 
XP4 = X + PI04 
XC = X*CTA 
XCP4 = XC + PI04 
IEIKZ = STA2*DCMPLX(DCOS(XP4), DSIN(XP4))/TSRX 
SEKC = STA*DCMPLX(DCOS(XCP4),-DSIN(XCP4) ) 
IEMPO(I) = (4.D0/SRTPI)*(IEIKZ+SEKC*FRESNL(2.D0*X*CTA2SQ)) - 2.D0* 

1 STA*DCMPLX(DCOS(XC),-DSIN(XC)) 
1 CONTINUE 

RETURN 
END 
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C Function FRESNL evaluates a form of the Fresnel Integral for 
C argument X, specifically, the integral from zero to SQRT(X) of 
C exp(it**2)dt. A Chebyshev polynomial expansion is used for X less 
C than 7 and another is used for X greater than 7. The coefficients 
C are from Table 24, page 328 and 329 of Volume II of Luke's book, 
C "The Special Functions and Their Approximations." The coefficients 
C given here are simply those in the book divided by two. FRESNL is 
C called by XIEMPO and by a subprogram used in finding (IH-Ipo). 
c 

COMPLEX FUNCTION FRESNL*16(X) 
COMPLEX*16 DCMPLX 
REAL* 8 X , DSQRT, DSIN, DCOS, RPI02, A( 16) , B(16) , RC(25) , IC(25) , 

1 Y(2), XX, DABS, X08, FOX, X08SQ 
DATA RPI02/1. 2533141373155002 5121D0/ 
DATA A/ -0. 00000000000000008751D0, 0 .00000000000000493266D0, 

1 -0 . 00000000000024172015D0, 0 .00000000001018666274D0, 
2 -0. 00000000036450 810593D0, 0 .00000001090829227466D0, 
3 -0. 00000026804669944621D0, 0 .00000528698828191630D0, 
4 -0. 00008132488809443773D0, 0 .00093927711719911009D0, 
5 -0. 00773262242230690979D0, 0 .04208022660438467689D0, 
6 -0. 13486655169193555514D0, 0 .21644099989863326527D0, 
7 -0. 215677737738300 89656D0, 0 .3821756933209300 0094D0/ 
DATA B/ -0 . 0 0 000 000000000001109D0, 0 . 00000000000000066819D0, 

1 -0 . 00000000000003516208D0, 0 .00000000000160024212D0, 
2 -0 . 00000000006224915109D0, 0 . 0000 000 0204124865848D0, 
3 -0. 0000000554942 09 20 43 4D0, 0 .00000122560 374961649D0, 
4 -0. 00002143535766051002D0, 0 .00028727475988448683D0, 
5 -0. 002822817385660 95449D0, 0 .01911127889316504347D0, 
6 -0. 08124744577254783707D0, 0 . 18808 58 6321671828312D0, 
7 -0. 21172255702852666772D0, 0 .3152070 2157285269620D0/ 
DATA RC/ 0. 00000000000000002612D0, 0 .00000000000000003239D0, 

1 -0 . 00000000000000037573D0, 0 .00000000000000155347D0, 
2 -0. 00000000000000429646D0, 0 . 00000000000000698781D0, 
3 0. 00000000000000634657D0, -0 .00000000000010357825D0, 
4 0 . 00 000 0000000 47315709D0, -0 . 00000000000135101335D0, 
5 0. 00000000000169738230D0, 0 .00000000000764304404D0, 
6 -0. 00000000006578827233D0, 0 .00000000026775038355D0, 
7 -0. 00000000054407240611D0, -0 . 00000000133275825051D0, 
8 0. 000000018877640 24651D0, -0 . 00000009382910042642D0, 
9 0. 00000015767650161726D0, 0 . 00000174661432988653D0, 
/ -0. 0 0 001956652043150792D0, 0 .00007326700129053392D0, 
A 0 . 00087714356982572662D0, -0 . 0 2249606510061970698D0, 
B -0. 02327889936875822803D0 / 
DATA IC/ -0. 00000000000000005898D0, 0 . 00000000000000018144D0, 

1 -0. 00000000000000038087D0, 0 . 00000000000000028479D0, 
2 0. 00000000000000201778D0, -0 •00000000000001275308D0, 
3 0. 00000000000004503197D0, -0 . 0 0 00 00 000 00010204942D0, 
4 0. 00000000000005356182D0, 0 .00000000000085821900D0, 
5 -0. 00000000000526846515D0, 0 .00000000001821160947D0, 
6 -0. 00000000003153985690D0, -0 .00000000008238645529D0, 
7 0. 00000000098311801633D0, -0 . 00000000454539864633D0, 
8 0. 00000000953974378644D0, 0 .00000003754635868605D0, 
9 -0. 00000049952763318406D0, 0 . 00000 244184087696664D0, / 0 . 00000053953449370317D0, -0 . 0001330474 7632 362367D0, 
A 0. 00124137141155653017D0, 0 •00609175491573949873D0, 
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B -0.49528023968674877433D0 / 
XX = DABS(X) 
IF( XX .LT. 7.D0 ) GO TO 1 
FOX = 5.D0/XX 

C 
C Sum the Chebyshev series. 
c 

CALL EATSTR( FOX, 24, RC, Y(l) ) 
CALL EATSTR( FOX, 24, IC, Y(2) ) 
FRESNL = DCMPLX(0.5D0,0.5D0)*RPI02+DCMPLX(Y(l),Y(2))* 

1 DCMPLX( DCOS(XX),DSIN(XX))/DSQRT(XX) 
RETURN 

1 X08 = XX/8.D0 
X08SQ = X08 *X08 

C 

C Sum the Chebyshev series. 
C 

CALL EATSTR( X08SQ, 15, A, Y(l) ) 
CALL EAT2P1( X08, 15, 3, Y(2) ) 
FRESNL = DCMPLX( Y(l), Y(2) ) *DSQRT(XX) 
RETURN 
END 

C Subroutine SEP is used to separate C, a COMPLEX*16 variable, 
C into its real part, imaginary part, magnitude and phase. These 
C results are stored in A(l) through A(4), respectively. A is an 
C array of length 4 and of type REAL*8. SEP is used in PNTOWT. 
c 

SUBROUTINE SEP(C, A ) 
C0MPLEX*16 C, CC 
REAL* 8 C2 ( 2) , A(4), CDABS, O80OPI,PI, DATAN2 
DATA PI/3.1415926535897 93238 46D0/ 
EQUIVALENCE(CC,C2) 
O80OPI = 180.D0/PI 
CC=C 
A (1) = C2(l) 
A (2) = C2(2) 
A(3) = CDABS(CC) 
A (4) = 0 8 0 OPI* DATAN 2( C2(2), C2(l) ) 
RETURN 
END 
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These routines were written by 
Donald Farness Hanson, June, 1975. 

C The following MAIN program evaluates the H-polarization 
C (H-vector parallel to the edge) half-plane current minus the 
C physical optics current, (IH-Ipo), from the values of (IE-IPO) found 
C previously by the method of moments. For each point along the 
C half-plane, two numerical integrations must be performed. For the 
C first, the values of (IE-IPO) must be known for angle of incidence 
C THETAD=90 degrees and for the second, (IE-IPO) must be known for the 
C angle of incidence for which (IH-Ipo) is to be found. The details 
C of this method are presented elsewhere in this work. MAIN reads 
C RESULT vectors written on the disk by the moment method program for 
C (IE-IPO) and operates upon them in the appropriate fashion. Results 
C are written on the disk for THETAD=45, 90, 135, and 180 degrees 
C respectively. Results due to the hybrid expansion are read from 
C disk file 21 and those due to the pulse-everywhere expansion are 
C read from disk file 22. The approximate results for (IH-Ipo) due to 
C the numerical integrations are stored in IHMPOA by SUBROUTINE AIHMPO 
C and the "exact" results due to the analytic expression are stored in 
C IHMPOX by SUBROUTINE XIHMPO. MAIN calls YARRAY, AIHMPO, XIHMPO, and 
C PNTOUT directly. A list of the subprograms called by each of these 
C routines is given among the respective routine descriptions. This 
C routine requires 132 seconds of IBM 360/75 execution time, and 9 
C seconds of compile time. 
c 

COMPLEX*16 DCMPLX, A(200), 
1 ), IHMPOX(499) 
REAL*8 Y(499) , KZ(200), H, 
INTEGER I, J, NPTS, NSIZE 
LOGICAL HYORPS 
NSIZE = 200 
NPTS = 499 
Read hybrid expansion RESULT arrays for 45 and 90 degrees into A 

and B1, respectively. 

READ(21) TA(1), H, KZ, A, A, A 
READ(21) TA(2), H, KZ, Bl, Bl, B1 

Set up an array Y of points at which to evaluate the current 
(IH-Ipo). 

CALL YARRAY( NPTS, KZ, NSIZE, H, Y ) 

Write these points on disk file 25. 

WRITE(25) NPTS, H, Y 

61.(200), B2 ( 20 0 ) , EIKZ (200 ) , IHMPOA(499 

THETAD, TA(2), DCOS, DSIN 
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C 

C Fill an array with often used numbers to make the program more 
C efficient. 
C 

DO 1 1=1, NSIZE 
1 EIKZ(I) = DCMPLX( DCOS(KZ(I) ), DSIN( KZ(I) ) ) 

THETAD = TA(1) 
HYORPS = .TRUE. 

C 

C Evaluate the current (IH-Ipo) for 45 degrees using the hybrid 
C expansion. 
c 

CALL AIHMPO( NPTS, Y, A, B1, KZ, EIKZ, NSIZE, H, THETAD, HYORPS, 
1 IHMPOA ) 
CALL XIHMPO( NPTS, Y, THETAD, IHMPOX ) 

C 

C Compare with "exact." 
C 

CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS ) 
C 

C Read pulse-everywhere expansion RESULT arrays for 45 and 90 
C degrees into A and B2, respectively. 
c 

READ(22) TA(1), NSIZE, H, KZ, A 
READ(22) TA(2), NSIZE, H, KZ, B2 
HYORPS = .FALSE. 

C--
C Evaluate the current (IH-Ipo) for 45 degrees using 
C pulse-everywhere expansion. 
c 

CALL AIHMPO( NPTS, Y, A, B2, KZ, EIKZ, NSIZE, H, THETAD, HYORPS, 
1 IHMPOA ) 

C 

C Compare with "exact." 
c 

CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS ) 
HYORPS = .TRUE. 

c 

C Read B1 into A. 
c 

DO 2 1=1, NSIZE 
2 A (I) = B1(I) 

THETAD = TA(2) 
C 

C Calculate the current (IH-Ipo) for 90 degrees using the hybrid 
C expansion. 
C-

CALL AIHMPO( NPTS, Y, A, B1, KZ, EIKZ, NSIZE, H, THETAD, HYORPS, 
1 IHMPOA ) 
CALL XIHMPO( NPTS, Y, THETAD, IHMPOX ) 
CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS ) 
HYORPS = .FALSE. 

C 
C Read B2 into A. 
C 
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DO 3 1=1, NSIZE 
3 A (I) = B2(I) 

THETAD = TA(2) 
rt V-
C Calculate the current (IH-Ipo) for 90 degrees using the 
C pulse-everywhere expansion. 
c 

CALL AIHMPO(NPTS, Y, A, B2, KZ, EIKZ, NSIZE, H, THETAD, HYORPS, 
1 IHMPOA ) 
CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS ) 
DO 4 J=3, 4 
HYORPS = .TRUE. 

c 

C Read hybrid expansion RESULT array for 135 (,J=3) and 180 (J=4) 
C degrees and calculate the current (IH-Ipo). c 

READ(21) THETAD, H, KZ, A, A, A 
CALL AIHMPO( NPTS, Y, A, Bl, KZ, EIKZ, NSIZE, H, THETAD, HYORPS, 
1 > IHMPOA ) 
CALL XIHMPO( NPTS, Y, THETAD, IHMPOX ) 
CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS ) 
HYORPS = .FALSE. 

c 

C Read pulse-everywhere expansion RESULT array for 135(J=3) and 
C 180 (- J = 4) degrees and calculate the current (IH-Ipo). 
c 

READ(22) THETAD, NSIZE, H, KZ, A 
CALL AIHMPO( NPTS, Y, A, B2, KZ, EIKZ, NSIZE, H, THETAD, HYORPS, 
1 IHMPOA ) 
CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS ) 

4 CONTINUE 
STOP 
END 
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C Subroutine YARRAY generates the points at which it is desired 
C to calculate the current (IH-Ipo). NPTS is used here to dimension 
C array Y only; otherwise, it is not used. KZ is the array of match 
C points that was used in the method of moment solution for (IE-IPO). 
C H is the half subsection width (H=0.05) and Y is the output array of 
C points. One hundred points are equally spaced H/100 apart within 
C the interval (0:H) and 399 points are equally spaced H apart on the 
C interval (H:19.95). These points were chosen to provide the details 
C of the current near the edge as well as the general form away from 
C the edge. 
c 

SUBROUTINE YARRAY( NPTS, KZ, NSIZE, H, Y ) 
INTEGER NPTS, NSIZE 
REAL*8 KZ(NSIZE), H, Y(NPTS), DZ, DFLOAT 
INTEGER I, OFFSET, J 
Y(l) = KZ (1) 
DZ = H/100.D0 

Evaluate Y for points near the edge. 

DO 1 1=1, 100 
1 Y(1+1) = DFLOAT(I)*DZ 
OFFSET = 98 

Evaluate Y for points away from the edge. 

DO 2 1=2, NSIZE 
J = OFFSET + I + I 
Y(J) = KZ(I) 

2 Y(J+l) = KZ(I) + H 
RETURN 
END 
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C Subroutine AIHMPO calculates the current (IH-Ipo) at the NPTS 
C points contained in array YVALU by the Green's function method 
C applied to (IE-IPO). A and B are arrays of values of (IE-IPO) for 
C angles of incidence THETAD and 90 degrees, respectively. KZ is the 
C array of match points used in obtaining A and B. EIKZ is an array 
C of values of exp(iKZ) which is used to increase program efficiency 
C by calculating the numbers once and storing them for later use. 
C Arrays A, B, KZ, and EIKZ are all of length NSIZE. H is the 
C subsection half-width that was used for (IE-IPO). HYORPS (HYbrid OR 
C PulSe) is a logical variable which is .TRUE, when the A and B arrays 
C correspond to the hybrid expansion for (IE-IPO) and is .FALSE, for 
C the pulse-everywhere expansion. IHMPOA is the output array of 
C (IH-Ipo) values and is of length NPTS. AIHMPO calls either 
C IFGHP(pulse) or IFGHSH(hybrid). The "exact" value of the 
C consistency constant is used for convenience. 
c 

SUBROUTINE AIHMPO( NPTS, YVALU, A, B, KZ, EIKZ, NSIZE, H, THETAD, 
1 HYORPS, IHMPOA ) 
INTEGER NPTS, NSIZE , 
COMPLEX*16 DCMPLX, A(NSIZE), B(NSIZE), EIKZ(NSIZE), IHMPOA(NPTS) 

1, HSUME, HSUMS, GSUME, GSUMS, ITIMES, EIY 
REAL*8 H, THETAD, KZ(NSIZE), YVALU(NPTS), DSIN, DCOS,DSQRT, STA, 

1 CTA2, PI/3.14159265358979323846D0/, THETA, SY, CY, Y, SRT2 
INTEGER I 
LOGICAL HYORPS 
SRT2 = DSQRT( 2.D0 ) 
THETA = (THETAD/180.D0)*PI 
STA = DSIN( THETA ) 
CTA2 = DCOS( THETA/2.D0 ) 
IF( THETAD .EQ. 180.D0 ) CTA2 = 0.D0 
DO 2 1=1, NPTS 
Y = YVALU(I) 
SY = DSIN(Y) 
CY = DCOS(Y) 
EIY = DCMPLX( CY, SY ) 
IF( HYORPS ) GO TO 1 
CALL IFGHP(Y, A, B, KZ,EIKZ,NSIZE,H, GSUME,GSUMS, HSUME,HSUMS) 
GO TO 2 

1 CALL IFGHSH(Y,A,B,KZ, EIKZ, NSIZE, H, GSUME, GSUMS, HSUME, HSUMS) 
2 IHMPOA(I)=EIY*(SRT2*CTA2*ITIMES(HSUME)+STA*GSUME-2.D0) 
1 + SY*(SRT2*CTA2*ITIMES(HSUMS)+STA*GSUMS) 
RETURN 
END 
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C 
C 
c 
c 
c 
rt 

c 
c 
c 
c 
c 
c 
c-

c-
c 
c-

Subroutine IFGHSH and entry subroutine IFGHP evaluate four 
numerical integrations that are required by AIHMPO to evaluate the 
current (IH-Ipo) from the current (IE-IPO). The internal logical 
variable HORP (Hybrid OR Pulse) is set to .TRUE, if IFGHSH is called 
and to .FALSE, if IFGHP is called. Y is the point at which the 
current (IH-Ipo) is to be evaluated. A, B, KZ, and EIKZ are the 
same as described in the write-up for AIHMPO and are arrays of 
length NNSIZE. H is the subsection half-width for (IE-IPO). 
Outputs GSUME, GSUMS, HSUME, and HSUMS are the values of the 
numerical integrations. Prefixes of "G" and "H" are used to specify 
results associated with the A and B vectors, respectively. Suffixes 
of "E" and "S" are used to specify that the results need to be 
multiplied by exp(iY) and sin(Y), respectively. Either IFGHSH or 
IFGHP is used by AIHMPO. 

SUBROUTINE IFGHSH( Y, A, B, KZ, EIKZ, NNSIZE, H, GSUME, GSUMS, 
1 HSUME, HSUMS ) 
INTEGER NNSIZE 
C0MPLEX*16 A(NNSIZE), B(NNSIZE), EJIKZ (NNSI ZE) ,GSUME, GSUMS, 

1 HSUME, HSUMS, FRESNL, DCMPLX, TMP, ZRO/(0.D0,0.D0)/, SAEKZ, 
2 SBEKZ, FDIF 
REAL*8 Y, YY, H, HH, KZ(NNSIZE), TEMP(2), SH, DSIN, DCOS, DABS, 

1 SNKZ, CSKZ, SP, SM, ARG, PT, TWO/2.D0/ 
INTEGER I, J, K, NYSMI, NYS, NYSPl, IDINT, NSIZE 
LOGICAL HORP 
EQUIVALENCE( TMP, TEMP) 
Initialize HORP(.TRUE. for hybrid, .FALSE, for pulse). 

HORP = .TRUE. 
GO TO 1 
ENTRY IFGHP( Y, A, B, KZ, EIKZ, NNSIZE, H, GSUME, GSUMS, HSUME, 

1 HSUMS ) 
HORP = .FALSE. 

1 NSIZE = NNSIZE 
YY = DABS(Y) 
HH = H 
SH = DSIN(HH) 

c 

C NYS is the number of the subsection that Y is in. 
c 

NYSM1 = IDINT( (YY/HH+1.D0)/TWO ) 
NYS = NYSM1 + 1 
NYSPl = NYSM1+2 

c 

C See if Y is or is not within the first subsection and respond 
C accordingly. 
c 

IF(HORP) GO TO 3 
IF(NYS.EQ.1) GO TO 2 
PT = DSIN(HH/TWO) 
PT = PT*PT 
GSUME = A(1)*PT 
HSUME = B(1)* SH/TWO 
GO TO 5 
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2 PT = DSIN(YY/TWO) 
PT = PT*PT 
GSUME=A(1)*PT 
HSUME=B(1)*DSIN(YY)/TWO 
ARG=(HH-YY)/TWO 
SM = DSIN(ARG) 
ARG = (HH+YY)/TWO 
TMP = DCMPLX( DCOS(ARG), DSIN(ARG) ) 
GSUMS = A(1)*SM*TMP 
HSUMS = B(1)*SM*TMP 
GO TO 8 

3 IF( NYS .EQ. 1 ) GO TO 4 
TMP = FRESNL( HH ) 
GSUME = A(1)*TEMP(2) 
HSUME = B(1)*TEMP(1) 
GO TO 5 

4 TMP = FRESNL(YY) 
GSUME = A(1)*TEMP(2) 
HSUME = B(1)*TEMP(1) i 
FDIF = FRESNL(HH) 
FDIF = FDIF - TMP 
GSUMS = A(l)*FDIF 
HSUMS = B(1)* FDIF 
GO TO 8 

Integrate from subsection 2 through (NYS-1) . 

5 IF( NYSM1 .LT. 2 ) GO TO 7 
SAEKZ = ZRO 
SBEKZ = ZRO 
DO 6 1=2, NYSM1 
J = NYSM1-I+2 
TMP = EIKZ(J) 
SNKZ = TEMP(2) 
CSKZ = TEMP(1) 
SAEKZ = SAEKZ + A(J)*SNKZ 

6 SBEKZ = SBEKZ + B(J)*CSKZ 
GSUME = GSUME + SH*SAEKZ 
HSUME = HSUME + SH*SBEKZ 

C Treat subsection NYS. 

7 ARG = (YY + KZ(NYS) - HH)/TWO 
SNKZ = DSIN(ARG) 
CSKZ = DCOS( ARG ) 
SM = DSIN( (YY-KZ(NYS)+HH)/TWO) 
GSUME = GSUME + A(NYS)*(SM*SNKZ) 
HSUME = HSUME + B(NYS)*(SM*CSKZ) 
ARG = (YY+KZ(NYS)+HH)/TWO 
TMP= DCMPLX( DCOS(ARG), DSIN(ARG) ) 
SM = DSIN( (KZ(NYS)+HH-YY)/TWO ) 
GSUMS = A(NYS)*SM*TMP 
HSUMS = B(NYS)*SM*TMP 
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C Integrate from subsection (NYS+1) through NSIZE. 

8 IF ( NSIZE .LT. NYSPl ) GO TO 10 
SAEKZ = ZRO 
SBEKZ = ZRO 
DO 9 1= NYSPl, NSIZE 
J= NSIZE - I + NYSPl 
SAEKZ = SAEKZ + A(J)*EIKZ(J) 

9 SBEKZ = SBEKZ + B(J)*EIKZ(J) 
GSUMS = GSUMS + SH*SAEKZ 
HSUMS = HSUMS + SH*SBEKZ 

10 TMP = HSUMS 
HSUMS = DCMPLX( -TEMP(2), TEMP(l) ) 

C Multiply all sums by a common factor of -2. 
c 

HSUMS = -TWO*HSUMS 
GSUMS = -TWO*GSUMS * 
HSUME = -TWO*HSUME 
GSUME = -TWO*GSUME 
RETURN 
END 

C Function ITIMES takes "i" times the argument S. ITIMES is 
C called by AIHMPO, IFGHSH, and IFGHP. 
c 

COMPLEX FUNCTION ITIMES*16(S) 
COMPLEX*16 S, SS, DCMPLX 
REAL*8 SS2(2) 
EQUIVALENCE( SS, SS2 ) 
SS = S 
ITIMES = DCMPLX( -SS2(2), SS2(1) ) 
RETURN 
END 
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C Subroutine XIHMPO calculates the current (IH-Ipo) at the NPTS 
C points stored in array KZ by the analytic or "exact" formula. The 
C output is returned in array IHMPOX. KZ and IHMPOX are arrays of 
C length NPTS. THETAD is the angle of incidence in degrees. XIHMPO 
C calls FRESNL and is called by MAIN. 
c 

SUBROUTINE XIHMPO( NPTS, KZ, THETAD, IHMPOX) 
INTEGER NPTS 
C0MPLEX*16 DCMPLX, IHMPOX(NPTS), FRESNL, EIKZC 
REAL*8 KZ(NPTS) , Y, THETAD, THETA, DCOS, DSIN, CTA, CTA2SQ, 

1 PI, PI04, SQRTPI, YC, YCP4 
DATA PI/3.14159265358979323846D0/, 

1 SQRTPI/I.77245385090551602730D0/, 
2 PIO4/0.78539816339744830962D0/ 
INTEGER I 
THETA = ( THETAD/180.D0)*PI 
CTA = DCOS( THETA) 
CTA2SQ = DCOS(THETA/2.D0 ) 
IF ( THETAD .EQ. 180.D0 ) CTA2SQ = ',0.D0 
CTA2SQ = CTA2SQ*CTA2SQ 
DO 1 1=1, NPTS 
Y= KZ(I) 
YC = Y*CTA 
YCP4 = YC + PI04 
EIKZC = DCMPLX( DCOS(YCP4), -DSIN(YCP4) ) 

1 IHMPOX(I) = (4.D0/SQRTPI)*(EIKZC*FRESNL(2.D0*Y*CTA2SQ) ) 
1 -2.D0*DCMPLX(DCOS(YC),-DSIN(YC) ) 
RETURN 
END 
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C Subroutine PNTOUT writes results in disk file 25 and also 
C prints out the "exact" and the approximate real part, imaginary 
C part, magnitude and phase of (IH-Ipo). THETAD is the angle of 
C incidence in degrees. Y, IHMPOA, and IHMPOX are arrays of length 
C NPTS. IHMPOA and IHMPOX have been filled by subprograms AIHMPO and 
C XIHMPO, respectively, with values of approximate and "exact" 
C (IH-Ipo) evaluated at the points contained in Y. HYORPS is .TRUE. 
C when the numbers corresponding to the hybrid expansion are being 
C passed. 
c 

SUBROUTINE PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS ) 
INTEGER NPTS 
COMPLEX*16 IHMPOA(NPTS), IHMPOX(NPTS), EXACT, ANS 
REAL*8 SA(4) , SX(4), ZM(3, 4), Y(NPTS), THETAD 
INTEGER J, K, IC(4)/' RE=',' IM=' ,'MAG=',' AGL='/, I 
LOGICAL HYORPS 
PRINT 1, THETAD 

1 FORMAT('1','THETAD=',F9.4//T5,'KZ',T19,'EXACT',T38,'ANS',T56, 
1 'DIFF', T76, 'EXACT', T97,'ANS', T114, 'DIFF' ) 

c 

C Write results on disk. c 

WRITE(25) THETAD, IHMPOA 
IF(HYORPS) WRITE(25) IHMPOX 

c 

C Print results. c 

DO 3 K=1, NPTS 
EXACT = IHMPOX(K) 
ANS = IHMPOA(K) 
CALL SEP( EXACT, SX ) 
CALL SEP( ANS, SA ) 
DO 2 J=1,4 
Z M(1,J) = SX(J) 
ZM(2,J) = SA(J) 

2 ZM(3,J) = SX(J) - SA(J) 
3 PRINT 4, Y(K), ( IC(I), (ZM(J,I) ,J = 1,3) , 1 = 1,4 ) 
4 FORMAT(' ', T2, 0PF8.5,T10,2(A4,'<',1PD17.10,'/',D17.10,'>',D17.10 
1 , 2X)/T10,A4,'<',D17.10,'/',D17.10,'>',D17.10,2X,A4,'<',0PF17.10, 
2 '/', F17.10, '> ' ,F17 .10 ) 
RETURN 
END 
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