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ABSTRACT

The current source-function (CSF) technique is a formulation for
electromagnetic scattering problems which does not require the use of
vector or scalar potentials. For perfect (electric) conducting scatterers,
it yields a Fredholm integral equation of the first kind with a forcing
function which is simply proportional to the incident field. Once the
solution to the integral equation has been determined, the current or
field is found by Green's function techniques. This contrasts with the
standard formulations which require that either an integro-differential
equation be solved (the Pocklington formulation) or an integral of the
incident field be performed (the Hallen formulation).

The CSF technique for perfect electric conducting scatterers is
based on a direct relationship between the electric field E and the
electric current density J. For harmonic time dependence e—lwt, this dir-

ect relationship is

V2E + sz = —— {VV.J + sz} =10
= = iwe = = iwe —

where w is the radian frequency, k is the (free-space) wave number, and €
is the permittivity of the medium. The quantity in the braces is the vec-
tor current source-function U. Since uJ may not be twice-differentiable in
the ordinary sense, U, u, and E are interpreted as Schwartz distributions.
If U is known, then the electric field E and the current density v are
easily found.

Two classical problems are examined to demonstrate the validity and
feasibility of the CSF technique. These are the problems of scattering by

a conducting half-plane and by a conducting strip of finite width. First,



the half-plane problem is solved analytically by the CSF technique for
both E- and H-polarized incident plane waves. For the E-polarization,
the CSF technique is almost the same as previous formulations. For the
H-polarization, however, a "finite part'" integral equation (which can also
be interpreted as a convolution equation in distribution theory) must be
solved. The resulting current source-function must satisfy a consistency
condition, which is developed, in order that it be uniquely determined.
Once the current source-function has been found, the current on the half-
plane is found by Green's function techniques.

The half-plane problem is also solved numerically. 1In this connec-
tion, computer subroutines for evaluating the following special functions

are given:

% X
olt cosd Hél)(t)dt, ¢ 2 Hél)(lD—tl)dt, Hél)([D—tl)dt.

0 0 -X

In addition, a highly accurate subprogram for evaluating an array of Bessel
functions of the first kind is given. These computer programs are used in
calculating the E-polarization half-plane current by the moment method.
Results for a hybrid expansion (with a z 2 function at the edge) are com-
pared with those for an all-pulse expansion. The H-polarization half-plane
current is found numerically by the CSF technique by using the moment
method results for the E-polarization. For both polarizations, the numer-
ical results show excellent agreement with the analytical solutioms.

The procedures developed for the half-plane problems appear to be
applicable to the strip problem. However, the complete solution of the

strip problem by the CSF technique is yet to be discovered. An even
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solution to a homogeneous finite part integral equation with allowed edge
behavior remains to be determined. Consistency conditions are developed
which must be satisfied for the problem to have a unique solution.

The CSF technique for three-dimensional electromagnetics problems
with time-dependent incident fields is also formulated. Thus, the CSF
technique is a general one and it appears that almost any problem that can
be solved using vector and scalar potentials can be solved using the CSF
technique instead.

The major contributions of this dissertation are:

(a) the formulation of the CSF technique for three-dimensional electro-
magnetic scattering problems with time-dependent incident fields by treat-
ing all fields and currents as Schwartz distributions,

(b) the demonstration of a method for finding solutions of the homo-
geneous finite part integral equation, and

(c) the development of consistency conditions which are required for

the uniqueness of the current source-function.
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1. INTRODUCTION

In the years since 1965, a great deal of work in electromagnetic
theory has been based on the moment method for the numerical solution of
integral equations. For certain classes of problems, the electric field
integral equation, derived by requiring the tangential component of the
electric field to vanish on perfectly conducting surfaces, is most advan-
tageous. The cylindrical antenna problem is an example. Previous studies
of this problem have considered one of two standard representations for
the electric field integral equation, or some slight modification of one
of them. If azimuthal variation in the field can be neglected, the inte-

gral equations are

I + k l l I(z) K(|z-t|)dz = iweE- (1), t €L, (1.1)

and

tan
L

t €L, (1.2)

( I(z) K(|z—t|)dz = A cos(kt) + B sin(kt) + iwe E- (z)g(t,z)dz,

where e—lwt time dependence with radian frequency w is assumed, k is the
free space wave number, and ¢ is the permittivity of the medium. These
two equations are due to Pocklington (1897) and Hallen (1938), respectively.
I(z) is the induced current due to the incident electric field which has

tangential component E . The kernel K(|z—t|) is



2m

1 ikv4a® sin2(¢/2) + (z—t)2
K(lz-tl) = 5 dé (1.3)

Bn /Zaz sin2(¢/2) + (z—t)2

where ¢ is the azimuthal angle and a is the cylinder radius. A and B are
constants. g(t,z) is a Green's function for the one-dimensional harmonic
operator (dz/dt2 + kz). Discussions of these integral equations may be
found in many sources, for example, in Mittra (1973, pp. 9-14).

In 1972, Mayes (1972) proposed an alternate integral equation formula-

tion for the cylindrical rod scatterer or antenna. This formulation is

u(z) K(|z-t|)dz = iweE’_ (£), t €L (1.4)
where
2 2
— + kI = u(z). (1.5)
dz

Note that the integral equation (l.4) has the same kernel as (1.1) and
(1.2) and that there are no differential operators involved. The left-hand
side of (1.4) has the same form as the left-hand side of Hallen's equation
(1.2) and the right-hand side is identical to the right-hand side of
Pocklington's equation (1.1). The unknown quantity in (1.4), however, is
not the induced current, but rather an auxiliary function, called the "cur-
rent source-function,'" from which the current can be obtained by solving
the inhomogeneous differential equation (1.5). If a solution for the cur-
rent source-function u(z) is found from the integral equation (1.4), then

the current is found from (1.5) to be



I(z) = u(t) g(t,z)dt, z €L, (1.6)
L

2 1Y,

where g(t,z) is a Green's function for the operator (d2/dz

The current source-function (CSF) technique differs from previous
procedures in that the vector and scalar potentials are not used. Instead,
direct relationships between the fields E and H and the electric and mag-
netic current sources, J and K, respectively, and their derivatives, are
introduced. Although these direct relationships are not new, their appli-
cation to integral equations apparently is. Collin (1960, Eq. (51b), p. 21)
gives such a direct relation between E and J. It is

2 2

VE+kE=—{VV-J+k2J}=.—_-U (1.7)
- - 1we - - 1we —

where

U= Vved + sz. (1.8)

This U is the vector current source—-function. The solution for E in terms

of U is

ikR
e

1 llU(r') — av’ (1.9)
\'

bdriwe

E =

where R = |r—r'| is the source-point to observation-point distance. Equa-
tion (1.9) may be used to form electric field integral equations for
antennas and scatterers which are shapes other than finite circular cylin-
ders.

Since the form of the CSF integral equation, Equation (1.4), is sim-

pler than either that of Pocklington or of Hallen, it has been conjectured



that the numerical solution of CSF integral equations should be more effi-
cient. However, the CSF formulation is not without difficulties. The
current density function J may not be twice-differentiable throughout all
of space. Hence, the current source-function may not exist everywhere,
This may require that the concept of functions be generalized according to
the rules of Schwartz distribution theory. Furthermore, differentiation
of J may produce singularities in U of such order that the integral (1.9)
is divergent. In this case either the theory of distributions or the con-
cept of the finite part of divergent integrals is required.

The work reported here was undertaken to establish the validity and
feasibility of the CSF technique. For this purpose, some classical pro-
blems of electromagnetic scattering are attacked using the CSF approach so
that comparisons can be made. The validation of the CSF formulation for
scattering by a semi-infinite conducting plane is reported here in detail.
Chapter 2 surveys previous work on certain aspects of the half-plane pro-
blem and its relation to the CSF technique. Chapter 3 details the analytic
solution to the half-plane problem using the current source-function
technique. Chapters 4 and 5 discuss the numerical solution of the half-
plane problem by the CSF technique for the E-polarization and the H-
polarization, respectively. An attempt to extend the CSF technique to the
strip problem is described in Chapter 6. Chapter 7 presents a discussion
of the possible extension of the CSF technique to the three-dimensional
time-dependent case. Conclusions and suggestions for further work are

given in Chapter 8.



2. LITERATURE SURVEY AND BACKGROUND MATERIAL

The solution for the current induced on a perfectly conducting half-
plane by an incident plane wave was chosen as a first test of the CSF
technique. A number of mathematical procedures have previously been
established to provide solutions to this classic problem. Some early
authors developed results which, accepted as proper at the time, were later
shown to be improper because they did not satisfy the edge condition.
After the development of the edge condition, other researchers published
papers that corrected such results of the early authors. In order to make
the earlier results obey the edge condition, the later authors sometimes
found that another function which satisfied the requirements of the pro-
blem had to be subtracted from the original solution. It turns out that
a similar function must be added to have the current source-function ex-
hibit the correct edge behavior. [For example, see Equation (4.2) of
Chapter 3.] This additional function is not integrable in the ordinary
sense, so that the theory of divergent integrals must be used. Integral
equation and integro-differential equation formulations for the half-plane
problem are given in Section 2.1. The partial differential equation CSF
formulation for the half-plane problem is discussed in Section 2.2. The
findings of the authors who altered early results to make them conform to
the edge condition are described in Section 2.3. Divergent integrals are

discussed in Section 2.4.

2.1 Integral and Integro-differential Equation Formulations

Consider a perfectly conducting half-plane subjected to an incident

plane wave of radian frequency w polarized with either the electric or the



magnetic field parallel to the edge of the conductor. These will be re-
ferred to as the E-polarization and the H-polarization, respectively.
Figure 2.1 shows the geometry and the coordinate system for each of these
polarizations. Throughout this chapter, M denotes the metal or perfectly
conducting sheet defined by x = 0, z > 0 in Figure 2.1.

The integral equation and integro-differential equation formulations
for, respectively, the E-polarization and the H-polarization half-plane
currents are well known. For the E-polarization [see Figure 2.1(a)], the

integral equation for the current I. is

(o]

1(z") B (k|22 )dz" = ok 2 > 0. (1.1)
0

For the H-polarization [see Figure 2.1(b)], the integro-differential equa-
tion for the current I. is

H

—_— IH(z') Hél)(k|z—z'|)dz' = i:-Ei, z > 0. (1.2)
dz

H D

0 is the Hankel function of the first kind and order zero and is the

kernel for the equations. Z0 is the intrinsic impedance of the (free-
space) medium. IE(z') and IH(z'), respectively, are the unknown E- and

. . 1 . N .
H-polarization currents. Ey and EZ are the tangential incident electric

fields evaluated at x = 0. For plane wave incident fields, these are

L= e“1kz cosd Volts/meter (1.3)

and

. sinbd e—1kz cost Volts/meter (1.4)

=
]



| T

I

P

(b)

Figure 2.1. The Geometry of the Half-plane Problem for (a) the E-
polarization, and (b) the H-polarization.



Equations (1.1) and (1.2) become

l I_(z") H(l)(k|z-z'l)dz' = —é—-e—ikz cose’ z >0 (1.5)
0 E 0 kZO
and
(95 +1h ' L,(z") Hél)(k|z-z'|)dz' = 2K ginp &TKE 050 0. .6)
dz 0

0

The integral equations for the CSF formulation for the half-plane
problem follow from (1.8) and (1.9) of Chapter 1. For the E-polarization,
the current JE’ which has z-variation IE(z), flows in the y~-direction and

— \

is independent of y. This makes V- B 0 so that the current source-

function, given by (1.8) of Chapter 1, is equal to sz If the z-variation

B

of the current source-function is denoted by u,.(z), then
() = K1, (2) 1.7)
up (2 g(2)- .

Hence, for the E-polarization, the CSF integral equation is identical in

form to (1.5)

4k -ikz cosb
=— e

0

u(z") Hél)(klz-z'l)dz' s z > 0. (1.8)

0

The solution for the current source-function ug is trivially different from

the solution for I._.
L

For the H-polarization, the current J, flows normal to the edge of the

H
conducting half-plane and must be zero at the edge. Hence, VV-JH # 0 so

that the current source-function, given by (1.8) of Chapter 1, contains



partial derivatives of the current JH. For this polarization, the CSF
technique for the half-plane problem is a two-step process. First, the
integral equation

uH(z') Hél)(klz-z'l)dz' = ﬁk-sine e'-ikz c036’ z >0, (1.9)

must be solved for uH(z') and then the inhomogeneous differential equation

'
dzz + k IH = uH(z) (1.10)

must be solved for IH(z). The reader is referred to Section 3.2 for the
complete discussion. Using the known behavior of the current IH near the
edge, and differentiating twice according to (1.10) yields a current
source-function uH(z) which is not locally integrable. This requires a
special interpretation for the integral in (1.9). The interpretation of
this integral is treated in Section 2.4.

Equations (1.5) and (l1.6) have been solved by a variety of methods.
One popular method has been the Wiener-Hopf technique. Copson (1946) was
apparently the first to use the Wiener-Hopf technique to solve the integral
equation (1.5). The use of the Wiener-Hopf technique for solving (1.5) and
(1.6) is given by Noble (1958). Both Noble and Karp (1950, p. 418) comment
on the non-uniqueness of Wiener-Hopf solutions. In treating the H-
polarization half-plane problem, Karp shows how terms of the form H%l)(kr)x

cos(¢/2) and certain of its derivatives arise due to the Wiener-Hopf solu-

tion technique. (r and ¢ are the polar coordinates of a point in space.)
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He indicates that all such terms satisfy all of the conditions of the pro-
blem and that each term has its own singular edge behavior. Karp concludes
that "for uniqueness it is necessary to specify the behavior of the solu-

tion at the origin also."

Thus, an additional condition, the edge condi-
tion, is needed to rule out all terms having the improper singularity at
the edge. Several such terms must be included, however, in the Wiener-

Hopf solution of the integral equation (1.9) for u This is given in

H‘
Chapter 3. The next section shows how such terms arise when the classical

solution of the half-plane problem is differentiated. Each differentiation

introduces a higher order singularity at the edge.

2.2 The Wave Equation and a Magnetic Field Source-Function

In the last section, an integral equation for the H-polarization half-

plane current source-function u_ was developed. In this section, the

H
current source-function for the same problem is found using a differential
equation approach instead of the integral equation approach. To do this,

a "magnetic field source-function" which satisfies the scalar Helmholtz
equation subject to the Neumann boundary condition is introduced. Once the
solution for the magnetic field source-function is found, the current source-
function is derived from the magnetic field source-function in the same way

that the current is obtained from the magnetic field.

For the E-polarization half-plane problem, the total electric field

ES = % + E (2.1)
y y y
where E; and E? are the incident and scattered fields, respectively. The

total field must satisfy the scalar Helmholtz equation
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W + kZ)E; =0 (2.2)

subject to the Dirichlet boundary condition

Et =0 on M. (2.3)
y
2 32 32
Here, V =~ +<——§ and k = w/c where ¢ is the speed of light. Conditions
9x 0z

on the behavior of the field near the edge and near infinity are also re-
quired. If the field is known, the E-polarization current I. may be found
from the field by using the equation for the discontinuity in the tangential
magnetic field
L (E a§;
IE(z) = —— {5;—-(x =0+, z) - % (x = vu-. z)} (2.4)

iwp

where u is the permeability of the (free-space) medium. The current source-

function for this case is given by (1.7) to be
u(z) = K°I_(2). (2.5)
E E

IE is given by (2.4).

t .
For the H-polarization, the total magnetic field Hy is

gt = 5 +ut (2.6)
y 'y ¥

s i . . . .
where Hy and Hy are the scattered and incident magnetic fields, respectively.

The incident magnetic field can be written as

Hi _ e—ikr cos(p - 0) 2.7)
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where (r,¢) are the polar coordinates of the observation point and 6 is
the angle of incidence given in Figure 2.1. The field must satisfy the

scalar Helmholtz equation
2 2
(V- + k )Hy =0 (2.8)

subject to the Neumann boundary condition
— =0 on M. (2.9)

For this polarization the current I, on the half-plane is

H
\

I, = H; (x = 0+, z) - H; (x = 0-, z), (2.10)

and the current source-function Ups given by (1.10), is

dZIH 2
uH(z) = + k IH (2.11)

dz

where I.. is given by (2.10). An expression for the current source-function,
which is analogous to (2.10) for the current, can be found if a magnetic
field source-function

BZHW(x,z)

Ty(x,z) = + k'Hy(x,z) (2.12)

324

is introduced. The expression for the current source-function then becomes

uy(2) = T; (x = 0+, z) - T§ (x = 0-, z). (2.13)
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Bouwkamp (1946) shows that any solution of the wave equation may be
differentiated to obtain another solution. This was apparently first
mentioned by Lord Rayleigh (1897). 1In discussing the half-plane problem,
Bouwkamp indicates that an nt" order derivative with respect to z of Hy’
for example, still satisfies the scalar Helmhotz equation (2.8) subject to
the Neumann boundary condition (2.9). The order of the singularity at the
edge of the half-plane becomes higher and higher after each differentiation.

It is easily shown that T;(x,z), given by (2.12), obeys the scalar
Helmholtz equation (2.8) subject to (2.9). Clearly, if H; satisfies (2.8),

82

Bz‘

then (V2 + kz)( + kZ)H§ = 0 and the magnetic field source-function T;

also satisfies scalar Helmholtz equation

It
o

v + kz)T; (2.14)

aT" ~ su* SH"
Since — — — and —

0xX 822 9xX 0x

0 on M, the boundary condition on the

. . . t
magnetic field source-function Ty becomes

— =0 on M. (2.15)
0x

It is seen that the magnetic field source-function satisfies exactly the
same conditions as does the magnetic field Hy' For this case, however,
the incident field (the incident magnetic field source-function), found

from (2.7) and (2.12), is

i 2
T = (-~ + kz)H; =k sin26 e

—-ikr cos(¢ - 8)
y 822

(2.16)
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This has the same spatial variation as H . The only difference is the
constant k2 sinze. It becomes apparent that it might be possible to
handle certain problems by a field source-function approach, i.e., solving
for Ty and then finding Hy from (2.12).

In order to find the current source-function uy using a differential
equation approach, the scalar Helmholtz equation (2.14) with the Neumann
boundary condition (2.15) and the incident field (2.16) must be solved for
Ty' With T; known, Equation (2.13) is used to find the current source-
function. Instead of actually solving the differential equation (2.14)
subject to the boundary condition (2.15), both Equation (2.12) and the
known solution for H; of the half-plane p;oblem are used.

Sommerfeld (1896) was the first to give the exact solution of the
half-plane problem. For the H-polarization problem, Sommerfeld's solution

for the total magnetic field due to the incident field (2.7) is

V2kr cos%(¢—6)

-in/4 . , 2
Hy(r,¢,6) - -ikr cos(9-9) elT dt
V2kr cos%(¢+6)
ik ) 2.17
+ o ikr cos (9+6) e=" dr (2.17)

The solution for the magnetic field source-function can be obtained from
(2.12) and (2.17). Bouwkamp (1946, Equation (6), page 471) gives expres-

sions for the partial derivatives of Sommerfeld's solution. By using
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2_t 2
these expressions, 9 Hy/az can be straightforwardly found. The required

solution for the magnetic field source-function becomes

T (r,4,8) = K% sin’e H;(r,¢,6) + T (x,0,0) (2.18)
where
TN(r,¢,9) =
9 3 _i(kr+m/4) cosEoN
= k‘(—) coszf ————— icos%¢(cos¢—cose) - f (2.19)
vkr 2ikr 7°

Ht on the right-hand side of (2.18) is given by (2.17). It may be shown

that TN obeys the scalar Helmholtz equation subject to a Neumann boundary

~

condition. The subscript N is a reminder of this fact. T, may also be

N
written in terms of Hankel functions Hél) as
T, (r,¢,8) = k2 cosz6 elﬂ/4 z a_ cos[(n+3)¢] H(lg(kr) (2.20)
N n=0 © ats
where
a, = i(3 - cosb) and a; = - 1. (2.21)

The current source-function may be obtained by substituting (2.18) and
(2.20) in (2.13) after changing (r,¢) to (x,z). It then becomes

uy (z) = k% sin%e 1. + %- k2cos%6 ei“/4 )

oz, n=0

1

)
a Hn+%(kz) (2.22)
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where the a; are again given by (2.21) and the current I, is given in terms

H
of Hy by (2.10). This gives the current source-function by a differential
equation approach in terms of the previously derived results of Sommerfeld
(1896) and Bouwkamp (1946). The last terms in (2.22) have been divided by
the free space intrinsic impedance Z0 to conform with the notation of

Chapter 3. From (2.19), both the magnetic field and current source-

functions become infinite as

i.e., as the edge is approached.

If the scalar Helmholtz equation subject to the Neumann boundary con-
dition had somehow been solved instead of just differentiating Sommerfeld's
solution, the summation index on the series in (2.20) would have extended
from zero to infinity. From (2.18), it is seen that the solution for T;
is composed of two parts. The first part is that due to the incident field

Note that the first term in (2.18) is just the magnetic field Hy
multiplied by k2 sin26. This makes sense because the incident field T; is
just the incident magnetic field Hy multiplied by the same constant. The
second part is just comprised of terms of the form cos(nt+})¢ Hfii(kr).

Such terms satisfy the Helmholtz equation, the boundary condition, and the
radiation condition independently of the incident field. As n in the series
(2.20) becomes larger, however, the order of the singularity at the edge

becomes higher and higher. The edge condition, the subject of the next

section, places an upper limit on the values allowed for n.
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2.3 The Edge Condition

Since its development in the 1940's, the edge condition has played
a crucial role in electromagnetics problems for objects with edges. It
should be expected to be equally important in the source-function develop-
ment.

A number of papers were written in the late 1940's and early 1950's
that obtained results which obeyed the edge condition from those that did
not. In the case of half-plane problems, the proper results were often

obtained from the improper ones by adding or subtracting functions, such

(1)

n+;(kr), that cancel the improper
2

as those in (2.20) with radial variation H
\
singularity at the edge.

For example, Copson (1950, p. 283) uses integral equation techniques
3

to find a solution to the half-plane problem which has z ¢ edge behavior.
By subtracting a term which has this same edge behavior and which also
satisfies all of the conditions of the problem, he is able to obtain the
correct solution.

The procedure which Bromwich (1915) used to deduce the field of a
dipole in the presence of a wedge yields inadmissable edge singularities.
Bromwich's solution satisfies the edge condition only for the case when
the axis of the electric dipole is parallel to the edge of the half-plane.
Woods (1957) extends Bromwich's method to handle arbitrary orientations
of the dipole. She finds that appropriate solutions of the wave equation

must be subtracted from the Bromwich solution to satisfy the edge condition.

These solutions are of the form

13 sin(ntz) ¢
Hn;;(kr) { (3.1)
2 cos(ntz)¢.
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It is terms of this type which appear in (2.20) and are part of the mag-
netic field source-function in (2.18).

In the Copson and Woods papers, each author finds that his solution
has a singularity of too high an order at the edge. Each then finds
another function with this same singularity which otherwise satisfies all
of the requirements of the problem and subtracts this from the original
solution to obtain the correct solution. The situation with the CSF tech-
nique is just the opposite. The straightforward solution of the integral
equation (1.9) yields a result with an edge singularity that is not high
enough. A term with the proper edge behavior must be added to the first
part of the solution to obtain the correck solution. This is described in
Section 3, 3.

The edge conditions for the E-polarization and H-polarization currents

on the half-plane are

o( z 2), z + 0, (3.2)

=
Il

and

L
2

o( z=), z + 0, (3.3)

Ty

respectively. [See Mittra and Lee (1971, pp. 4-11).] The edge conditions
for the E- and H-polarization current source-functions of (2.5) and (2.11),

respectively, are

-L
2

o( z =), z ~ 0, (3.4)

[
Il

and

o( z @), z =+ 0. (3.5)

£
I
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Equation (2.22) for u, satisfies the edge condition. It is the edge con-

H
dition which prohibits the addition of terms like those of (3.1) for
n > 1 to the magnetic field source-function of (2.18).
A function is said to be locally integrable if it is integrable in

the Lebesgue sense over every finite interval. The current source-function
u,,(z) of (2.11), satisfying the edge condition (3.5), is not locally inte-
grable. The formal integration of u,; near the edge gives

8

[ z 2dz =2 lime ® - 28 %, (3.6)

0

Since the limit does not exist this is a divergent integral. Such inte-

grals are discussed in the next section.

2.4 Divergent Integrals and the Finite Part

Some authors writing in the early 1950's commented that integrals of

1 Bouwkamp (1954) points

the type (1.9) may be divergent. In several places
out that if the d2/dz2 operator of (1.6), for example, is taken under the
integral sign, the resulting kernel is non-integrable. This is true, but

it has been shown that the integral can be assigned a meaning by introduc-
ing the concept of the finite part. This concept dates back to A. L. Cauchy
(1826) who used it to assign a meaning to the gamma function for negative
values of the argument. Hadamard (1923) extends the concept to the multi-

dimensional case. A lengthy bibliography and a general discussion of the

history of the finite part of divergent integrals is given by Bureau (1955,

1p. 40; pp. 68-69.
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pp. 143-146). Both Hadamard (1923) and Bureau (1955) use the finite part
concept in connection with solving partial differential equations.

Friedlander (1951) uses a modification of the method developed by
Hadamard for Cauchy's problem to solve the half-plane problem with time-
dependent excitation. He shows that the integrals arising in the solution
process must be interpreted as finite part integrals.

Equation (1.9) must be a finite part integral equation because u(z')
is not locally integrable. If the notation "Fp'" is used for the finite

part, this equation becomes

4k -ikz cos
7f'51n6 e

Fp | u.(z") HD (k|z-2']) dz' =

0 2> 0. (4.1)

This is a Fredholm finite part integral equation of the first kind over
semi-infinite range.

Methods for solving finite part integral equations have been studied
by several authors. Butzer (1959) and Boehme (1963) use operational cal-
culus to study the finite part of divergent convolution integrals. They
both treat finite part singular integral equations of Volterra type.
Wiener (1962) treats linear finite part integral equations of Fredholm

2 pub-

second kind and Volterra types. In a series of over thirty papers
lished over the last fifteen years, he and his colleagues treat many finite

part integral equations. However, it appears as if Fredholm finite part

integral equations of the first kind with Hankel function kernmels, such as

2Generally published in Wiss. Z. M.-L. Univ. Halle--Wittenberg, Math.
Nachr., or Beitrage zur Analysis.
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(4.1), have not yet been treated explicitly.
Belward (1972) obtains both the classical and generalized function

solutions of the integral equation
l G(t)KO(‘z—tl)dt = F(z), 0<z< o, (4.2)

by using the properties of fractional integrals. Here KO is the MacDonald
(modified Bessel) function. It is related to the Hankel function Hol)(x)
by

Ko (x) = ;é-Hél)(ix). 4.3)

The solution of the finite part integral equation (4.1) is obtained by just
making the indicated change of variable in Belward's generalized function
solution. Generalized functions use the finite part concept in their de-
finition. [See, for example, Schwartz (1966a, pp. 33-43)]. A discussion
of the Schwartz distribution theory formulation of the current source-
function technique is presented in Section 6.3.

Hadamard (1923, pp. 134-141) introduces the theory of the finite part
of divergent integrals and discusses several examples at length. This
excellent discussion should be consulted by those interested in the total
theory. Several examples of finite part integration which are relevant to

the present work are given here. As a first example, consider the integral

. _ 2 4. 4)
(b-t) (b-t)*

vl
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The right-hand side goes to infinity when it is evaluated at the upper
limit. The finite part of this expression is found by retaining only the
value obtained when the right-hand side is evaluated at the lower limit.

Hence,

dt -2

(4.5)
(b-t)2  (b-a)®

Fp

As another example of finite part calculation, consider the integral

it
s dt, v x > 0, (4.6)
te

e

Making the lower limit ¢ and formally integrating by parts gives

X it it it
‘ ——dt = -2 — | +2i | — dt. (4.7)
vt t

Clearly, in the limit as € -+ 0, the first term becomes infinite. The

finite part of this integral is defined as

it I X it ) l
Fp 3 dt = 1im 3 dt - - - x > 0. (4.8a)
te e>0 te /el

Substituting (4.7) in this expression and taking the limit gives

e~ dt, x > 0. (4.8b)
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-5/2

At singularity in the integrand obtains

) 9 ix it
Fp eT/E dt = 322_-'-%1 Fp ert, x > 0. (4.9)
t x2 t2
0 0

More terms are added as still higher order singularities are considered.
If both sides of (4.8b) are formally differentiated, note that equality
is obtained.

The above calculation is carried out by using integration by parts.
This calculation may also be done by expanding e1L in its Taylor series
around t = 0, integrating term by term, and retaining only the well be-
haved terms. This approach is valid in the complex plane and is described
by Zemanian (1965, p. 58). For some finite part calculations, the Taylor
series approach would be preferred to the integration by parts approach.
Integration by parts will generally be used here.

The nonlocally integrable portion of the integrand will be labelled
a "pseudofunction" and denoted by "Pf." For example, consider the

it

pseudofunction Pf[lg(t) E}f] where lO(t) is the unit characteristic func-

tion of the interval [0,x]. The integral of this pseudofunction is defined

by
. oit xeit
Pf [17(t) —5—] dt = Fp — dt. (4.10)
ot?

The Pf notation is useful as a reminder to indicate that the finite part
must be taken if the function is integrated over limits including the sin-

gular point.



24

A useful property of finite part integrals with difference kernels
is that they may be differentiated under the integral sign as long as the
finite part is taken of the resulting integral. Consider the integral
1T

€ at m (Jame]) de = —avmeIE 450, (4.11)

Fp
T2

0 0

Differentiating both sides of this equation with respect to z and using

the fact that

9 (1)

37 B ([z=t]) = (4.12)
obtains
1T
0=| Fp| & dr = 8 (|z-tar,  z > o. (4.13)
3 3t Mo
0 0

Integrating by parts with € as the lower limit yields

Fp| S5 dr 2 B3P (Jz-tDat =
it o
B (z-t) Fp | & ar| - | & P (Jz-t])ar. (4.14)
T2 t2
0

Substituting (4.8b) in the first term on the right-hand side shows that

1
this term goes to infinity as € © as € goes to zero. The other terms at

€ and the terms at infinity vanish. The right-hand side becomes
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. 1
it 2851 (| 2)) I

l ~— (|z-t|)dt ———7;%:-—“~ ’ (4.15)

In the limit as € goes to zero, this is just

t PN
e Hél)(|z-t|)dt. (4.16)
t2

_Fp

This can be seen by expanding elL and Hél)(|z—t|) in their Taylor's series
The first term in each series is, respectively, 1 and Hol)(|z|). Substi-
tuting these in (4.15) shows that the divergent part of the integral in
(4.15) is just given by 2H;"(|z|)//e. Thus, by the four equations above,
it

Fp | — B3V (|z-thae = 0, z > 0. (4.17)
.2

Using (4.15) and (4.17), it can be shown that

't uM (fz-e)) P (2D

Fp | S H(()l)(|z—t|)dt = 5 dt = 0,
t2 t2
z > 0. (4.18)
In convolution notation, this is
pe [1, (e /e2] x BD (e =0, 250, (4.19)

where l+(t) is the unit step function. This example shows that there are

non-zero functions which yield zero on the right-hand side, i.e., the
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homogeneous finite part integral equation has non-zero solutions. It also

illustrates that the derivative operator may be taken under the integral

sign as long as the finite part is taken of the resulting integral.
Consider the integral of (1.6). Taking the second derivative under

the integral sign as described above shows that

— | 1,00 8P (k|z-tyae = Fp | |5 1,(0) Hol)(k|z—t|)dt,
dz dt
z >0, (4.20)
where
Fp | |[—5 Iy(t) Hél)(k|z—t|)dt =
dt
14 o (1) . -
= 1lim 5 -u| Ho (klz-t])dt + 1= IH(t)) (k|z]) (4.21)
e-+0l dt l

1
In this case, the last term must be included because dIH/dt =0(t ?®) as

t > 0 by the edge condition on IH(t). In this way, the integral equation

(1.6) may be written in the form

Fp u,(t) H(l)(k|z—t|)dt ﬁk-sine e-lkz cose, z >0 (4.22)
H 0 LO
where
dZIH 9
+ k IH = uH(t) (4.23)
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These are the basic equations involved in the current source-function

technique for the half-plane problem.

2.5 Conclusion

For the H-polarization half-plane problem, a "magnetic field source-
function" is introduced which allows the current source-function to be
found from field quantities. 1In this way, a differential equation approach

to finding the current source-function is derived. It is noted that all

(1)

n+l(kr)cos(n+%)¢ satisfy the source-free scalar Helmholtz
2

terms of the form H
equation with the Neumann boundary condition, but that the edge condition
restricts n to be at most one. The term for n = 1 has t ¢ edge behavior
and, therefore, is not integrable in the ordinary sense. The concept of
the finite part of divergent integrals is introduced so that integral equa-
tions for the current source-function can be interpreted. The CSF tech-
nique requires that a finite part integral equation must be solved for
uH(z). It is shown that this integral equation may be found from Pockling-

2 + k2) operator under the

ton's integral equation by taking the (82/82
integral sign. The next chapter treats the solution of the half-plane pro-

blem by the CSF technique.
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3. THE CURRENT SOURCE-FUNCTION TECHNIQUE APPLIED TO

THE HALF-PLANE PROBLEM

In this chapter, the problem of diffraction of a plane wave by a
perfectly conducting half-plane is solved analytically by the current
source-function (CSF) technique. This problem is chosen because it may
be solved exactly. It serves as a good example to illustrate the solu-
tion procedures required in the CSF technique. The harmonic problem with

1wt ., . s
time dependence is considered.

3.1 Maxwell's Equations and the Current Source-Function Technique

The solution of electromagnetic field problems is based on Maxwell's
equations. Assuming that any conducting inhomogeneities in a region have
been replaced with the induced electric current J acting in a homogeneous
medium with constitutive parameters ¢ and u, Maxwell's equations for the

electric and magnetic fields E and H produced by these currents are

UxH = YE + J 1.1
VXE = -Z H (1.2)
V+E = p/e (1.3)
V*H = 0 (1.4)
where Y = -iwe, Z = -iwny, ZY = —kz, and p is the electric charge den-

sity which is related to the current by

VeJ = iwp. (1.5)
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The CSF technique arises from a direct relationship between the fields

and the sources. The curl of (1.2) is

UXVXE = —=Z VxH = —z('y_E+J) (1.6)
or
veE - V’E = K’E - Z J. 1.7)
The divergence of (1.1) is
VeUXH = 0 = Y V+E + VeJ (1.8)
or VeE = -% vel. | (1.9)
Using this in (1.7) gives
v’E + K°E = - % (vv-J + K2J)= - %g. (1.10)

where U is the vector current source-function. Solving for the electric

field E due to the current J yields

1 ikR
= '
E ey J{f vy
where R = |r-r'| is the source-point to observation-point distance. A

discussion of this result for three dimensions is given in Chapter 7. The

present discussion is limited to the one-dimensional case.

3.2 The E- and H-polarization Current Source-Functions

The geometry for the E- and H-polarization half-plane problems is

given in Figure 2.1, For the E-polarization, the current flows in the
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y-direction only. The expression for JE can be written as

JE = IE(z)l+(z)6 x) vy (2.1)

where l+ is the unit step function and § is the Dirac delta function. The

current source-function becomes

(2.2)

because JE is divergence-free. For the H-polarization, the current flows

in the z-direction only. The current JH can be expressed as

JH = IH(z)l+(z)6 (x) 2z (2.3)

and the current source-function for this case becomes

= . -+ - =
UH vV JH k JH

9
2z

(IHl+) z (2.4)
dz

(IH1+) g; §(x) x + 8§(x)

For a proper interpretation, these derivatives should be performed using
Schwartz distribution theory. The reader is referred to Section 6.2 for
a discussion of Schwartz distribution theory.

Substituting (2.2) in (1.11) yields the expression for the E-

polarization scattered field. After using the fact that

ik sz + n2 + 22

r/X2+r]2+z2

dn = inHél)(k S+ 22y, (2.5)
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the expression becomes

uE(z') Hél)(k Vx© + (z—z')2 )dz' (2.6)
0

27T 4k
where

(2.7)

The total field EL is equal to the sum of the incident and scattered fields,
or EF = E + E°. On the half-plane, the tangential component of the total
electric field must be zero. Applying this boundary condition gives the

)
integral equation for uE(z'),

u.(z") Hﬁl)(klz—z'l)dz' = ﬁl—(-E_l_(x=0, z) = ﬁl—{-e_ikz cose’ z >0, (2.8)

0 ~0 -0
where 6 is the angle of incidence defined in Figure 2.1(a). If uE(z') is
found, then the current IE(z') can be found from (2.7). In this case, the
CSF formulation is only trivially different from the usual formulation.
For the H-polarization, however, the CSF formulation differs greatly
from the customary integral equations. Substituting (2.4) in (1.11), the

expression for the scattered electric field becomes

9
4k

fz'Jx' SST'(IH1+) sir §(x") Hél)(k /Qx—x')z + (z—z')2 Ydx'dz'

~ L
-z -

0

D] g zh Hél)(k A2+ (22" ydz! (2.9)
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where

+ k IH. (2.10)

The integrals in (2.9) must be taken as finite part integrals. The inte-
gral equation for u,(z') is obtained by applying the boundary condition
that the tangential electric field must be zero on the half-plane. The
integral equation becomes
Fp uH(z') Hél)(klz—z'|)dz' = 2T-Ei (x=0, z) = 7— sin® e_ikz cose’
v 7 \

z > 0, (2.11)
where 6 is the angle of incidence defined in Figure 2.1(b). If u,(z') is
found from this integral equation, then the current IH(z') may be found
from (2.10). The integral equations (2.8) and (2.11) for ug and u, are

remarkably similar in form. The main difference is that (2.8) is an

ordinary integral equation while (2.11) is a finite part integral equation.

3.3 The Solution of the Integral Equations for u(z)

In this section, the integral equations (2.8) and (2.11) are solved
for up and Uy respectively. For the finite part equation (2.11), one or

more solutions of the homogeneous equation

Fp | w(z') Hol)(klz—z'|)dz' = 0, z >0, (3.1)
0

may be added to the solution of the ordinary integral equation to obtain

another solution. The number of solutions that may be added is related to
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the edge condition on the current source-function. The homogeneous inte-
gral equation (3.1) is solved by three related methods. These are (1)
the Wiener-Hopf technique, (2) an application of the method of Belward
(1972), and (3) the differentiation of a (locally integrable) solution to
the ordinary integral equation.

Both the integral equation for the E-polarization and the ordinary
part of the integral equation for the H-polarization may be written as

f£(z") Hél)(klz—z'|)dz' = o 1kz cost z >0, (3.2)
0

0

where k = 1 for the E-polarization and k = sin0 for the H-polarization.
The solution of this integral equation has been found in several different
ways. Magnus (1941), for example, solves it using series of Bessel func-
tions. Copson (1946) and Noble (1958, p. 228) use the Wiener-Hopf tech-
nique. It has also been solved using the Kontorovich-Lebedev transform

by Lebedev et al. (1966, pp. 389-390). The solution is

kz (1+cosB)
2 I, . 1kz . . 2 ‘
f(z) =1 (2) ;k be i 51n(§/2) e + ginp o ikz cost it

0 /r | /2 Yz [

(3.3a)

vkz (1+cos8)
in/4 . . .2
- l+(z) §§_4e an% e1kz %;’ ikz (14+cos8) [ e1t dt . (3.3b)
0 Vr
kz (1+cos0)
= 1,(z) 2 H/% sind 1 8D (k2) + V2 cosd eTHF O 1D (£)de
~ 2

0

(3.3c)
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2 1'"/4 N . 2 .
=1 (2) Sk be sin(8/2) e1kz d o 1kz(l+cose). (3.3d)
Y2k dz?

1 a1
In (3.3d), the operator d?/dz® is the semiderivative operator of Oldham and
Spanier (1974, pp. 115-131). Hll)(t) is the Hankel function of the first
2
kind and order

The function f(z) has edge behavior

2

z as z - 0. (3.4)

Since u,, as given by (2.7), is allowed to have this same edge behavior,

the solution for up is

uE(z) = f(z) (3.5)

From (3.5) of Chapter 2, the current source-function for the H-polarization,

given by (2.10), must satisfy the edge condition u, = 0( z 2 ) as z + O.

H

This means that the function f(z) of (3.3) alone does not have to be the
_3

total solution of (2.11). Solutions of (3.1) which behave as z 2 as z > 0

may be added to f(z) without violating any of the conditions of the pro-

blem. The solutions of the homogeneous finite part integral equation are

found in each of the next three sections by different methods.

3.3.1 Solution of the Homogeneous Finite Part Integral Equation by the

Wiener-Hopf Technique

The Fourier transform pair that will be used here is

F@) = — | £(z) e *%dz, (3.6a)
V2r



f(z) = —— | F(a) e " "do.
Y21
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(3.6b)

When f(z) or F(o) are pseudofunctions these transforms must be defined

either in the sense of distributions or as finite part integrals.

The

theory and calculation of pseudofunction transforms, along with a large

table of transform pairs, is given by Lavoine (1963).

For a general des-

cription of the Wiener-Hopf technique, the reader is referred to Mittra

and Lee (1971, pp. 73-84).

The homogeneous finite part integral equation (3.1) may be rewritten

as
Pf w,(z') H\"/ (k|z-z'|)dz' =b_(2), =-w<z<w
where
w(z'") z'>0
Pf w,(2') =
* 0 z' <0
and
O (o]
b (z) =

b(z)= wa+ Hél)(klz—z'l)dz'

Taking the Fourier transform of (3.7) yields

Vé;-w+(a)G(a) = B (o), T_ < Imo < T,

where

W,(e) = — Fp J w(z) elazdz,

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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H(()l)(klzl) 1924, =/127— , (3.12)

vk~ - az

V2
and

B (@) = 1 | b(z) e *?dz. (3.13)

V2m

Equation (3.10) holds in the strip T < Ima <71, where the regions of re-

+
gularity of w+, G(a), and B_ overlap. Factorizing V2 G(a) into G+(a) and

G (a) gives

V21G(a) = G, (@) G (a) = —— —— . (3.14)

o

Equation (3.10) become

B_(a)
w+(a) G+(a) = ——. T_<Ima<rt

e (3.15)

Since the left-hand side is regular in the lower half plane Imo <t and
the right-hand side is regular in the upper half plane Ima > t_, then by
analytic continuation, both sides must equal the same entire function P(a).

Thus,

B_(a)
w+(a) G+(a) = @) = P(a), for all «a. (3.16)

To determine the nature of P(a), consider the asymptotic form of the above
equation and look at the asymptotic representations of w+ and G+. The
asymptotic form of w+(a) is related to the edge behavior of w(z), which is

required to be
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3,
w(z) =0(z %) as z = O+. (3.17)

Using a generalization of the Abelian initial value theorem, it is found
that
1
W+(a) ~ (-i0)®, |u| + o with Imo > 0.
Since G+(a) ~ (a) 2, !a! » o, it follows that P(a) = W+(a) G+(a) ~ C,

|a] + =, where C is a constant.

The solution for w+(u) becomes
W, (a) =C vk+a / V2. (3.18)

Taking the generalized inverse transform gives the required homogeneous
solution, which is
ikz

- | Vkta e 102400 = ——— |Va e ~7"da. (3.19)
2V 2 Vn

w(z)

The branch cut for va will be taken along the negative imaginary axis in
the a-plane. For z < 0, the path of integration must be closed in the
upper half of the a-plane and for z > 0 it must be closed in the lower
half. These paths are shown in Figures 3.1(a) and 3.1(b), respectively.
For z < 0, the integral in (3.19) is identically zero, as expected. For
z > 0, the path of integration may be deformed to enclose the branch cut

as shown in Figure 3.1(c). The integral in (3.19) becomes

~ =-iaz -in/4

va e do = -2ie ﬂgeTMdB =
P +P, 0
= -2i lTr/l’r'(%)/z?'. (3.20)
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Figure 3.1. Integration Path for (a) z < 0, and (b) z > 0; (c) Deformed
Path for z > 0.
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where ' is the gamma function. The expression for w(z) then becomes
s ikz
w(z) = - Sel™ipr "1 (a) (3.21)
z2

where C is a constant. This is the required homogeneous solution of the

finite part integral equation. Note that it has the required edge behavior.
This same result may also be obtained by using the fact that multipli-

cation by o in the transform domain is the same as differentiation with

respect to z in the spatial domain. Thus,

o =10 d -laz
Fp Yo e ~77da = — e %do = i az do
- z
_oova 20
i d — in/4 -3
= 2Vm e1“/4 EE’(Z 21+(z)) = /1 elﬂ/ Pf(z 2l+(z)) (3.22)
and
w(@) = - $ et e ;72 (o) (3.23)

as before.

3.3.2 The Solution of the Homogeneous Finite Part Integral Equation from

Belward's Results

Belward (1972, pp. 908-911) finds the solutions of the homogeneous

integral equation

Gy (t) KO(Iz-tl)dt =0, z >0, (3.24)

in a space of generalized functions, where KO(t) is the MacDonald (modified

Bessel) function. He uses the term "generalized function' in the sense
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defined by Jones (1966), i.e., that "a generalized function is an equiva-
lence class of regular sequences.'" This definition may be shown to be
equivalent to the definition of a distribution as a continuous linear
functional [see Antosik, Mukusinski, and Sikorski (1973, p. 235)]. He
finds

.0 -t

e
4+ eee 4 a ) T3 t > 0’ (3025)
N0 0 L2

GH(t) = (a

where n and the aj are arbitrary. Since Hél)(x) = é%‘KO(—ix), it could be
argued that the solution of (3.1) would be obtained if "t" in (3.25) were
replaced by -ikz. Although it is not clear whether this procedure can be
justified mathematically, it gives the same result as was obtained with the
Wiener-Hopf technique. Application of the edge condition gives a. = 0 for
j > 0. The solution becomes

ikz

w(z) = C' —,, z > 0, (3.26)
(kz)?2

where C' is a constant.

3.3.3 The Solution of the Homogeneous Finite Part Integral Equation by

Differentiation

Consider the integral equation

4k -ikaz

£(2') BY (k|z=2'|)dz" - ,  z>0, (3.27)
%0

0
where -1 < a < 1. The solution of this integral equation is given by (3.3)

except with cos6 replaced by a. Applying the operator L = — + ika to both
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sides of (3.27) yields

Fp | Lf(z") Hél)(klz—z'l)dz' =0, z >0, (3.28)
0

so that the solution of the homogeneous finite part integral equation is

w(z) ( é%—+ ika ) f(z)

3 in/4 — ikz
= - Kk € l_a e 3 > z > Oc (3-29)
Zg v/ (kz) 2

For any a # 1, this procedure yields the same solution as before. The ex-

pression for w(z) for the special case a = 0 was developed in Section 2.4.

3.4 The Consistency Condition

Redefining w(z), the homogeneous solution of the finite part integral

equation, to be the value given by (3.29) for a = 0 and k = 1 gives

.3 in/4 ikz
w(z) = - pf £ — 1,(z). (4.1)
Z Vi (kz) 2

The solution of the finite part integral equation (2.11) for uH(z) becomes
uH(z) = sinb v(z) + A w(z) (4.2)

where A is a constant and v(z) = £f(z)/k. f(z) is given by (3.3).
The relation between the current source-function uH(z) and the current
IH(z) is, from (2.10),

dZIH 9
+ k'L, = u.(z), z > 0. (4.3)
dz H H
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This is an inhomogeneous second order differential equation for IH’ the
half-plane current. The inverse of the operator £ = ( d2/dz2 + k2 ) can
be represented as an integral operator with a Green's function kernel.

This Green's function g(z,z') is a solution of the inhomogeneous differ-

ential equation

£*g = 8(z-2") (4.4)

subject to certain boundary conditions where £~ is the adjoint of
The adjoint boundary conditions are found by determining boundary

conditions such that

€ vy =(ng, £ (4.5)

0o

where (o,B) is shorthand for faBdz and £ = (d2/dz2 + kz). The + sub-

- Q0

script denotes that n is multiplied by the unit step function. In (4.5)

n takes the place of I, and ¢ is the function for which the adjoint bound-

H
1

ary conditions are to be found. The fact that the current I.. = O( z? )
1
as z » 0 for the H-polarization gives n(0) = 0 and n = 0( 22 ) as z > O.

Clearly, £n+ is allowed to be a pseudofunction because

3

fn=0(z2) as z - O+. (4.6)

For arbitrary y, this means that (¥n..v) must be interpreted as the finite

part integral

2
Fp| ( =5 + k™n ) ¢¥(z)dz. (4.7)
0 dz

Setting the lower limit to € and integrating by parts yields
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d2r

2 - dn .
( dzr + k" n ) y(z)dz = P ¥ (2) n(z) dz

n(z) (=% + kKop)ds (4.8)
dz

Because of the edge condition on n,
= 0(z %) as z - O+,
the finite part integral becomes

Fp| (£n) ¥(z)dz = lim [ &n) v(z)dz + %g-w(z)
0 e~>0

0 oo

+ I n(z) £*pdz. (4.9)
0

= %2 Y(z)| -n(z) g%

0

In order for (4.5) to hold, the boundary terms in (4.9) must vanish.

The boundary conditions to be satisfied are

n(z) %£-+ 0 as z -0, (4.10a)
z
dn Y(z) -0 as z (4.10b)
dz '
and n(z) g%—+ 0 as z » (4.10c)

The first condition is always satisfied because n(0) = 0. The current
asymptotically behaves like

-ikz cosO
I.. ~ e as z > o,
Il

After limiting 6 to be in the range 90° < 6 < 270°, a small imaginary part

may be introduced in k such that k = kk + ikz. This gives
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dn ~ ekZZ cosd as z - » with cos6 < 0.

Ny dz

From (4.10), v and d¥/dz must exhibit the exponential form

e as z -

v, S
with ¢ > k20056 in order for the boundary terms to vanish. It turns out
that ¢ = k2 so that this condition is always satisfied. This is the only
adjoint boundary condition that is required. A condition at zero is not
required for the adjoint problem. The above restriction on 6 is necessary
because a plane wave incident field in a lossy medium appears to become
infinite at plus infinity for angles of incidence 6 < 90° [See Figure 2.1].
If the incident plane wave itself exhibits this behavior, then it makes
sense that the current does also. It is assumed here that 6 is initially
restricted to the range 90° < 6 < 270° so that the incident field and the
current approach zero at infinity. ©0 is extended to all angles of inci-
dence only after the calculations have been completed.

The solvability of the second order differential equation
(dz/dz2 + kz)y = f(z), a < z < b, such that certain boundary conditions
are satisfied is closely related to the existence of solutions to the
homogeneous system and to the adjoint homogeneous system. In the case of
a scatterer of finite extent, solutions of the homogeneous system arise
only at resonance, i.e., when the physical extent of the scatterer matches
a multiple of a half wavelength of the incident field. For the semi-
infinite case, the homogeneous system has no nontrivial solutions. For
non-singular differential equations, it may be shown that if the homogeneous

system has only the trivial (zero) solution, then the adjoint homogeneous
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system has only the trivial (zero) solution. For the details, the reader
is referred to Stakgold (1967, Volume I, pp. 84-85). For problems involv-
ing pseudofunctions and the finite part, this is no longer true. The
adjoint homogeneous system usually has solutions even though the homoge-
neous system has only the trivial (zero) solution.

For the half-plane problem, the homogeneous, inhomogeneous, and
adjoint homogeneous systems are

The homogeneous system

£p =0 0 <z <™ p(0) =0 p>0as z > » (4.11a)
The inhomogeneous system
En =1 0 <z <w n(0) =0 n-=+0as z > (4.11b)
The adjoint homogeneous system
=0 0<z<w >0 as z > (4.11c)

where £ = £ = (d2/dz2 + kz). The radiation condition must also be satis-
fied. As was shown previously, the adjoint homogeneous system does not
have a boundary condition to be satisfied at z = 0. The differential
equation of (4.l1la) has solutions [e_ikz, e+ikz] or [sin(kz), cos(kz)],

but none of these satisfy the boundary conditions so (4.1la) has only the
trivial solution p = 0. The adjoint homogeneous differential equation also
has the above solutions, but in this case one of them does satisfy the
given boundary condition (again assuming that k = kl + i k2, 0 < k2 << 1,

and that 6 is restricted). The non-zero solution of the adjoint homoge-

neous system (4.1llc) is
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The following theorem is similar to one given by Stakgold (1967, Volume I,

p. 85).

Theorem: System (4.11b) has no solution unless the consistency condition

@
S f(z) v(z)dz = 0 is satisfied for every y(z) which is a solution of (4.1llc)

Proof: § is a second order differential operator and hence can have no
more than two non-zero linearly independent homogeneous solutions. Only
one of these goes to zero and is an outgoing wave as z > ». These are the
only conditions required on ¢ by (4.1llc). Multiplying (4.11b) by } and

(4.11c) by n, subtracting, and integrating from 0 to « gives

(ygn - ng*yY)dz = | £(z) v(z)dz. (4.12)
0 0

The left side is zero by applying the results of (4.10) to (4.9). There-

fore,

f(z) P(z)dz =0 (4.13)
0

must hold for every ¥ that satisfies (4.1lc). Note that for the trivial
solution Y(z) = 0, the consistency condition is always satisfied.
The constant A in the current source-function (4.2) can now be found.

The system

£IH = uH(z) 0 <z <w IH(O) =0 IH >0 as z » = (4.14)

is exactly of the form of (4.11b). Here the current source-function uH(z)
takes the place of f(z). 1In order for the system (4.14) to have a solution,

the consistency condition (4.13) must be satisfied with u

g in place of f.



Substituting (4.2) in (4.13), the consistency condition becomes

ikz

0= uﬁ(z)lp(z)dz = sin6 v(z) eikzdz + A | w(z) e dz.

Solving for A obtains

sin® v(z) e Tdz

w(z) elkzdz

Therefore, there is only one value of A for which a solution for I
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(4.15)

(4.16)

exists.

The integrals of w(z) and v(z) with respect to elkz, where w(z) and £(z) =

kv(z) are given by (4.1) and (3.3), respectively, become

ikz, 2ik
‘ v(z) e dz = Zosin(e/Z)
and
. 2
Fp’ w(z) oi¥2q, 272K°
‘0

0

Substituting these in (4.16) and simplifying yields

V2 cos(8/2)

A ik

The unique solution for uH(z) becomes

ve cos(8/2)

uH(z) = sinb v(z) + w(z)

(4.17)

(4.18)

(4.19)

(4.20)
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This is the required result. The solution for IH is found in the next

section.

3.5 The Current in Terms of the Current Source-Function

The solutions for ug and Uy the E- and H-polarization current source-
functions, are given by (3.5) and (4.20), respectively. The relations

between Uy and I.. and u_ and I_ are given by

1
IE = uE(z) (5.1)
k
and
dle 9
—— + kI, = u.(2). (5.2)
H H
dz

The first expression is trivial. 1In the second, the solution for IH may

be found using Green's function techniques. The solution is

lH(z) = uH(z') g(z,z')dz’ (5.3)
0

where g(z,z') is the Green's function for the operator in (5.2). This
Green's function may be found by solving the inhomogeneous distributional

second order differential equation
£*g = §(z-2'), 0 < z,z' < =, g outgoing as z' + o, (5.4)

subject to the adjoint boundary conditions. No boundary condition is re-
quired at z' = 0 and only a radiation type boundary condition is required

at infinity. The constraints on the Green's function are
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(1) g(z,z') continuous at z' = z,
dg
(2) ] o =1, (5.5)
dz 2 =gt dz
and (3) g(z,z') is an outgoing wave near infinity.

For z' # z, (5.4) becomes

. 1 s ]
This has solutions elkz , € tke , sin(kz'), or cos(kz'). Although a bound-

ary condition at z'=0 is not required, one may be imposed. If the condition

g(z, 2'=0) = 0 is imposed on g, then

l A(z) sin(kz') z > z'

glz,z') = (5.7)
l ikz' .
B(z) e z < z'.
Enforcing the conditions (5.5) gives
: ! . '
g(z,2') = b ( tklzz'| _ dk(z+z"), (5.8)

The current IH is found from (5.3). It is interesting to note that since
© i '
&)UH elkz dz' = 0 by the consistency condition (4.15), the current may also

be written as

I = uH(z') E(z-z')dz' (5.9)
0

1 ikjz,
e .

where E(z) = — This is just the ''fundamental solution' for the

operator §£ as is used in the theory of distributions. The current I.. is
just the convolution of uy with E. Thus, the integral in (5.3) has been

reduced to the convolution integral in (5.9).
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Substituting (4.20) for u,. in (5.9) obtains

H

sin® v iklz=z"|, , | Y2 cos(8/2) v ik|z-z'|, ,
IH(z) 21k v(z') e dz +-——IE?§EES—- w(z') e dz'.
0 (5.10)
The integrals in this expression are found to be
. -ikz o
et eik'z'z'ldz' i 4kelTr/4 e (Fz( ) l+(z)F2(2kz))
7 o sin(6/2)
0
- -ikz cos®
+ *f—i—l+(z) e Fz(kz(l+cose)) (5.11)
and
Fp| w(z") elklz—z'ldz' =
,,Ze—in/4 —ik
—S V2 &% (F,(») - 1,(2)F, (2kz)) (5.12)
Jr ? + 2
Z0 m
where
Vx in/4
FZ(X) et ate /i - et¥ U, £, -ix)
0
= vx M(3%,3 , ix). (5.13)

U and M are Kummer's functions and Fz(m) =/n "' ?/2. Substituting (5.11)

and (5.12) in (5.10) and simplifying gives
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Ykz (1+cosh)
-in/4 ) .2
I.(z) = 35L—;;;~1,(z) e ikz costl 74y (a/m) / (V/m) (5.14a)
Zy¥m 0
kz (1+cosf)
J 02 dwlay g mike cost| (D) gy (5.14b)
2 V(2K e 1T/4

ikz d ® -ikz(l+cos6)
€ e
dz

cos% 1,(2) e (5.14c)

where Hél)(t) is the Hankel function and the d 2/dz 2 operator is the
semiintegral operator of Oldham and Spanier (1974, pp. 115-131). It is

important to note that

(e}

-ikz

2ik

PR |
u, (z") et*% a2 0, 2z <o. (5.15)

0

I,(2) =

The integral is identically zero for all negative z. This is true because

of the consistency condition (4.15). Thus,

IH(z) = uH(z') E(z-z')dz"', - ® < z < (5.16)

The current is given by the integral for all values of =z.

3.6 Discussion of the Results and Conclusions

The main result of this chapter is the solution for the current IH(z)
induced on a perfectly conducting half-plane due to an incident plane wave.

The solution to the integral equation

Fp[ uH(z') Hol)(k|z—z'|)dz' = éli-sine e—1kz cose’ z >0

Z
0 0
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is found by adding the solution of the ordinary integral equation to a
solution of the homogeneous finite part integral equation such that the
edge condition is satisfied. The success of this procedure requires that
the form of the solution of the homogeneous finite part integral equation
be unique to within an arbitrary multiplicative constant. All three ways
of obtaining the homogeneous solution strongly suggest that this is true
since they all exhibit z-dependence of the form Pf l+(z)eikz/(kz)5. One
part of a source-free solution to the wave equation (described in Section
2.2) also has z-dependence of this form.

The constant multiplying the homogeneous solution is found by enforc-

ing the consistency condition

(uy(2), % = 0.

The current is found by inverting the dz/dz2 + k2 operator to obtain

IH = uH*E, all z.

The fundamental solution E may be used instead of a Green's function be-
cause of the consistency condition. The result for i,,, given by (5.14),
is identical with the results obtained by other methods.

The current source-function technique has several possible advantages
over the Hallen or Pocklington integral equation techniques for numerical
solution. The CSF technique retains the simplicity of the kernel of the
Hallen-type integral equation and does not require a differentiation oper-
ation in evaluating the matrix elements in the moment method as the

Pocklington approach does. Furthermore, the forcing function of the CSF
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integral equation is just the incident field. No operation on the inci-
dent field is required as is the case with the Hallen formulation. Since
the integral operator is simplified, the behavior of the current source-
function is expected to be somewhat similar to that of the incident field.
Of course, the CSF technique requires an additional operation to find the
current, but this is a straight-forward integration and may be separated
from the considerations involved in the moment method. Local inaccuracies
in the moment method solution for the current source-function should not
drastically effect the overall accuracy of the current since the induced
current is obtained by integrating over the (approximately represented)

\
source-function.
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4, THE NUMERICAL SOLUTION OF THE HALF-PLANE PROBLEM: E-POLARIZATION

The closed form solution of the half-plane problem with E-polarization
plane wave incidence is discussed in Chapter 3. The present chapter is
devoted to the moment method numerical solution of the same problem. The
method of moments discretizes an integral equation into a matrix equation.
This procedure has been widely discussed by Harrington (1968) and others
and so is not discussed here in an introductory sense. The transform
domain numerical solution of the half-plane problem is discussed by Li
(1972).

The results obtained here are used later to solve for the H-
polarization current by the current source-function technique. The half-
plane problem is chosen primarily because its exact solution is known and
can be used as a standard to judge the accuracy of the numerical procedures
described in this chapter. The computer programs used in this work appear

in Appendix D.

4.1 The Integral Equation Formulation for the E-polarization

The geometry for the E-polarization half-plane problem with plane wave
incidence is given in Figure 2.1. The integral equation for the current is

derived in Chapter 3 and is given by (2.7) and (2.8) of that chapter. It is

oo

! (1) 4 -ikz cos®
IE(z') Ho (klz—z'l)dz' = Eza e , z >0, (1.1)

where IE(z') is the y-directed E-polarization current. From energy consid-

erations for this structure and polarization
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|IE(z)| =0(z%2) as z + 0. (1.2)

This edge condition on the current is used to construct an appropriate ex-

pansion function set for the method of moments.

4.1.1 The Physical Optics Current, Ipo

A moment method numerical solution may be obtained only if the problem
is reformulated to make the range of integration in (1.1) finite. Far from
the edge, the current on the conducting half-plane is about the same as it
would be if the conducting plane extended to infinity in all directionms.
Applying this concept allows us to say t?at the current IE(z) approaches a
known function, the so-called physical optics current IPO(Z), as z becomes
large.

The geometry for solving for the physical optics current IPO(z) for
the half-plane problem is just that of Figure 2.1(a) except that the metal
is extended to infinity in all directions. For an incident plane wave

El - e—lkx sinb e—lkz cosf v, (1.3)

the total tangential magnetic field is

t _ 1, T _ ) i
Hz Hz + Hz (2/20)51ne cos(kx sinb) e

-1kz cose. (1.4)

The physical optics current is the difference in the tangential magnetic

field above (HZ) and below (Hl) the metal surface. It becomes

_ t t, _ 2 . -ikz cosf *
IPO = x x[H2 - Hl] = sinf e y. (1.5)

The physical optics current for the E-polarization is seen to be directed

in the y direction with magnitude ZSine/ZO.
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4.1.2 The Integral Equation for the Difference {IE Lo
r

The integral equation for the E-polarization half-plane current is

given by (1.1). Adding and subtracting terms in I.. in the unknown yields

{1, - Ip1(2") Hél)(k|z—z'|)dz' =

_o _- 1 e
k; o ikz cosb_ 2 . _, ikz'cos Hél)(k|z—z'|)dz'. (1.6)
0 -0
Transforming variables and substituting the identity
o 1ix cos® H(l)(|kz _ x|)dx‘=
—ikz cos6l 2 iy cos6 _ (1)
\sin€ e Hy " (y)dy 1.7)

kz
in (1.6), one obtains the integral equation

{1y - Tpg) By' (elz-z"[)dz’ =

E

2 sinb e—ikz cosB eiy cosB
kz

Hél)(y)dy, z>0. (1.8)
0

kz

The closed form solution of (1.8) may be obtained from Equation (3.3) of

Chapter 3 and (1.5). In (1.8) the unknown is the quantity {lE - I_.}.

PO
This difference should approach zero for large z', making it possible to

truncate the integral at some finite distance kL. If the upper limit kL

is chosen large enough, then
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[o2]

{1

g~ Ipot(t) Hél)(|kz—t|)dt S

kL
, {1, - Ipn}(t) Hél)(|kz—t|)dt = RHS(kz), =z > 0, (1.9)

0

where RHS is the right-hand side of (1.8).

4,1.3 The Choice of Expansion Functions

The integral equation (1.9) is solved numerically by the method of
moments. The unknown, {IE - IPO}’ is expanded in two similar basis func-
tion sets. The first is a hybrid expansion function set based on edge
condition considerations. The second is'an all-pulse expansion function
set which is chosen because of the simplicity of matrix element evaluation.
Point matching is used in both cases starting at the edge. The hybrid
expansion function set that is used is one with a half-width t 2 expansion
function at the edge and with full-width pulse expansion functions away
from the edge. This expansion is shown in Figure 4.1(a). The use of a
half-width edge subsection was suggested by Pearson (1975). This allows
the match points to be uniformly distributed. The all-pulse expansion
function set that is used is one with a half-width pulse expansion func-
tion at the edge and with full-width pulse expansion functions away from
the edge. This expansion is shown in Figure 4.1(b). It is of interest
to observe the effect that such a crude edge expansion function has on
the solution away from the edge.

The hybrid basis function expansion may be written as

l 0 <t <H

(1.10a)
lx (25-3)H < t < (23-1)H, 2 < j < 200,
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Hybrid Expansion: )IE- Ipof

7% Edge Behavior

0 H 2H 3H 4H 5H 397H 398H 399H
] l | S-testing
(a)
P |
* All- Pulse Expansion: |l - 15,

Figure 4.1.

" " 397H 398H 399H
S-testing

(b)

The Expansion Function Sets. (a) The Hybrid Expansion.
(b) The All-Pulse Expansion.
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where H (=0.05) is the subsection half-width and the x?'s are unknown con-

stants. '"r" is used because the hybrid expansion has a one over square

root expansion function at the edge. The all-pulse expansion may be writ-

ten as
Ix? 0<t<H
{Ip - IppH(e) = (1.10b)
[xp (2§-3)H < t < (2j-1)H, 2 < j < 200,
where the xj's are unknown constants. 'p" is used because the all-pulse

expansion is composed of pulse functions. Substituting (1.10a) in (1.9),

the approximate integral equation becomes
\

. (25-1)H

1
r ) (1)
1y t 7 Hy
0

N
x (|kz-t])dt + x§ Hél)(|kz—t|)dt = RHS(kz), z>0, (1.11)

i=2
(2j-3)n

where kL = (2N-1)H and N = 200. The corresponding expression for the all-
pulse basis function set is obtained by replacing the t ® under the inte-
gral sign by unity and the x§ by x. The moment method solution is
obtained by requiring Equation (1.11) to hold at kz = 2(i-1)H for
i=1,2,+++,N (point matching). This results in N equations in N unknowns
which may be written in matrix form as

ATkt = y (1.12)

for the hybrid expansion and as

APxP = § (1.13)

for the all-pulse expansion. A" and AP are almost-Toeplitz matrices of

integrals of the kernel weighted with respect to the basis functions. The
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Toeplitz matrix is a matrix with all of the elements in any diagonal equal.

Ar and Ap are

Py "N
§ “N-1 Py Y “N-1
A = and A" = (1.14)
N  °N-1 Py N1

These would be Toeplitz matrices except for the fact that the first column

is different. The individual matrix elements are

H
T l t 2 HYY (|D.-t])dt, (1.15)
H
- (1)
P, = ’ Hy * (|D.-t])dt, (1.16)
and H
- (1) _
£y = l Hy (|p.-t])dt (1.17)
-H

where H is the subsection half-width and Dj = 2(j-1)H for j = 1,2,++-,N.
is a vector of the right-hand side evaluated at these points. Matrix
element approximations are discussed in the next section. The evaluation
of the right-hand side is discussed in Section 4.3. A treatment of the
almost-Toeplitz matrix is given in Section 4.4, Finally, Section 4.5 dis-
cusses the results of the calculations. Complete listings of the computer

programs referred to in the following are given in Appendix D.
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4.2 Matrix Element Approximations

Matrix elements must be calculated as accurately as possible in order
to have the moment method results turn out reasonably accurate. This sec-
tion describes the method of calculating the matrix elements. Matrix
element approximations for pulse expansion functions are examined in the
next section and those for inverse square root expansion functions are de-

tailed in Section 4.2.2.

4,2.1 Matrix Element Approximations for Pulse Basis Functions

Matrix elements for the edge pulse expansion function may be written

in the form
H
Hél)(lD.—tl)dt, j = 1,2,°**,N, (2.1)
0

and those for expansion functions away from the edge may be written in the

form
H
1 .
£y = Hé )(ID.—tl)dt, j = 1,2,°°,N, (2.2)
-H
where N is the number of subsections, H is the subsection half-width, and
Dj = 2(j-1)H. For D = D1 = 0, the integrals become
H H H
P, = H(()l)(t)dt and t. = Hél)(]t|)dt=2 H(()l)(t)dt. (2.3)
0 -H 0

These matrix elements are called the self terms. All other matrix elements
are called mutual terms. Integrals like (2.3) may be approximated in terms

of Chebyshev polynomial series by
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X
Jotyde =} a_ T, . (x/8), -8 < x < 8, (2.4)
n=0
0
and
X
Yo (t)de = (2/m) [y + 2n(x/2)] | J(t)dt - nZO b T, (x/8), (2.5)
0 < x <8,
where v = 0.57721 56649 ... is Euler's constant. The coefficients a and

bn are given by Luke (1969, Volume II, Table 27, p. 334). The specific
range of validity of these equations is dictated by the available coeffi-
cients. The use of a Chebyshev series minimizes the maximum error over the
interval of approximation. That is, if G(x) = g anTn(x) is a proper

n=0
Chebyshev approximation to f(x), then

max lf(x) - G(x)]
~1<x<1

will be minimized over the set of all polynomials of degree N or less. If
a sufficient number of terms are included in (2.4) and (2.5), these inte-
grals may be evaluated to any desired accuracy. Various self term approx-
imations are derived and compared to the above in Appendix B.

For Dj # 0, the mutual terms may be written as

H b
H(l)(Dj—t)dt - Hél)(t)dt (2.6)
~-H

where a = Dj—H and b = Dj+H. The mutual terms are evaluated by using either

the Chebyshev series in (2.4) and (2.5) or the Chebyshev series

oo

Hél)(t)dt _ (ﬁ%)z ei(x+11/4) y . T*(S/x), x> 5, (2.7)

n=0
X
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where Tn is the shifted Chebyshev polynomial of the first kind given by
T*(x) = Tn(2x—l). The complex coefficients c are given by Luke (1969,
Volume II, Table 27, p. 335). The Chebyshev series of (2.4), (2.5), and
(2.7) are truncated after about 18 terms. This gives full double pre-
cision (15 digit) accuracy. The mutual terms are evaluated using either

(2.4) and (2.5) or (2.7) in either

l Hél)(t)dt - Hol)(t)dt - l Hél)(t)dt (2.8)

or

t Hél)(t)dt Hél)(t)dt l Hél)(t)dt, (2.9)

respectively. Careful study of the results indicates that for b = a+0.1l
approximately two digits of accuracy are lost in taking the difference.
Another way of saying this is that for b = a+0.1 the first two digits of
each of the integrals on the right-hand sides of (2.8) and (2.9) are
approximately the same. This allows about 12 or 13 decimal places of
accuracy for each pulse basis function mutual term matrix element computed
in this way in double precision. Various numerical approximations for the

mutual terms are compared in Appendix B.

4.2.2 Matrix Elements Associated with the Inverse Square Root Basis

Function
Matrix elements associated with the t © edge expansion function may

be written in the form

H
(1)

r t 2 Hy'/ (ID,~t])dt. (2.10)
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The self term is the value for D = Dl = 0 and the mutual terms are the

values for Dj > 0.

The self term takes the form
H

e 2 1Y (v)ae. (2.11)

This integral may be written in terms of series of Chebyshev polynomials

as
l t ® Jy(t)dt = Vx ) a T, (x) 0 <x<1, (2.12)
n=0
0
and
X X
l t < Yo(t)dt = — [y + n(x/2)] t ® JO(t)dt + /;-nzo bnTZn(x)’ (2.13)
0 =

0 < x < 1.

The coefficients a, and bn are given to thirty decimal places in Appendix C
along with a discussion of their computation. Various numerical approxi-
mations to this self term are given in Appendix B.

The mutual terms for the edge expansion function may be written in the

form
H

o= | c? Hél)(Di—t)dt. (2.14)

(1)
0

Expanding H (Di—t) in a series or products of Bessel and Hankel functions

according to Neumann's difference theorem for Bessel functions

B0 0-0) = 7w P oo, v > |t], (2.15)
k:—oo
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as given by Olver (1964, p. 363) and integrating with respect to t ©, one

obtains
H
21 o-tyae = ¥ en P 31, @ (2.16)
) k'k -
k=0 :
where
I 1 k=0
Ek = I (2.17)
2 k>0
and
H
: - H
Jlu’v(H) —J t Jv(t)dt\ (2.18)
0

as given by Luke (1962, p. 42). This same result may also be obtained by

(1)

expanding H0

(D-t) in a Taylor series. For a particular formulation, H

is fixed and so the Ji's need to be computed only once. D, on the other

(1),
k

hand, varies and so the H s need to be computed for many points. This

(1),
k

does not present any problem because the H s are very easily and

quickly computed using special algorithms. The Jk's are computed using

the algorithm of Blanch (1964) and the Y, 's are computed directly from the

k

recurrence relation. A brief description of Blanch's method is given in

Section 4.3.2.

The Ji ; , s are computed using a power series given by Luke (1962,
P. 44). The series is
z n (z 2n
: B =" G
Ji  (2) =7z Il (2.19)

n=0 n! (k+l)_ (2n+k+3)

This function is computed economically using the relations
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(1) = (obm) (b)), (2.20)
k! = (k) (k=1)!, (2.21)

and
zk = (z)zk_l. (2.22)

These relations are used to generate the next term in the power series
from the present one and also to generate Ji ; ,,.(z) from Ji ; . (z).
Since H is usually much less than one, the power series (2.19) is rapidly
convergent.

The series (2.16) for the matrix elements is computed to an accuracy
of at least ten decimal places with 32 terms. Various numerical approxi-
mations for the mutual terms due to the t ® expansion function are compared

in Appendix B.

4.3 The Right-Hand Side

The right-hand side of the integral equation under study here is

given in (1.8) and is

~ikz cost eit cosb

RHS = % sinf e H(()l)(t)dt, z > 0. (3.1)

0 kz
With the help of the identity

o cost "él)<t)dt -2 0% [ o0<e<m, (3.2)

0

Equation (3.1) becomes

kz
RHS = — e—lkZ cosh _ ;L-sine e—lkZ cosb e1t cos0 H(l)(t)dt (3.3)
0 ~0
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for z > 0. An infinite series representation for the last integral in

(3.3) is given by Luke (1962, pp. 239-240). One part of this representa-

tion is

X [

elt cosB I (t)dt = 2elx cosB z (-1)" U, (cosb) J (x) (3.4)
0 k k+1
k=0

0

where
- sin(k+1)6
Uy (cosB) = siné

is the Chebyshev polynomial of the second kind and Jk(x) is the Bessel

\
function of the first kind and order k. The other part of this representa-

tion is
X X
e1t cosb Y. (t)dt = g-[y + n(x/2)] elt cos® JO(t)dt
0
i k
et oSt T ()" U (cos0) S () (3.6)
k=0
where
, sakt+l _\m 2m
(k+1)! m=0 m! (k+2)m
k 1
In (3.7), h, =0, h, = p(k+l) - (1) = Z =, $(1) = - v, (z2), is Poch-
0 k =1 k

hammer's symbol and y is the psi function. The use of "S" to represent

this function is not standard, but is used to simplify (3.6).
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4.3.1 Computation of the Uk's

Values of higher order Chebyshev polynomials may be calculated from

the recurrence relation

Un+l(x) = 2x Un(x) - Un_l(x) (3.8)

using the initial terms
Uo(x) =1 (3.9)
and Ul(x) = 2x. (3.10)

This relation is given by Luke (1969, Volume I, p. 297). The use of this
relation is desirable because it is faster to evaluate an array of Uk's
in this manner than it is to evaluate them using (3.5). Equation (3.8)
proves to be reasonably stable in the forward direction. Values for U90

generated by this method are accurate to about 10 decimal places.

4,3.2 Computation of the Jk's

The method of Blanch (1964) for the computation of the Jk's is based

on the basic recurrence relation for Bessel's functions of the first kind

Gn(x) = (3.11)

2n
X Gn+l(x)

where

Jn(x) = Gn(x) Jn_l(x). (3.12)

The kth continuation of (3.11) yields the continued fraction expansion
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(3.13)

Since the forward use of the recurrence relation (3.11) for n > x results
in severe accuracy loss, the continued fraction method is used in the
backward direction as follows: Gnmax(x) is evaluated using (3.13) with

k = 15 or more and G .. ..(x) = 0. The other Gn(x) are computed from (3.11)
for n = nmax-1, nmax-2,+++,2. Finally, the Bessel functions Jn(x) are
evaluated from (3.12) for n =2,3,+++,nmax using Jo(x) and Jl(x) which have
been computed with Chebyshev polynomials. Blanch gives an algorithm for
carrying out these manipulations with minimal accuracy loss. Her algorithm
is used because Hart et al. (1968, p. 146) say, '"her discussion should be
consulted by those requiring an algorithm for computing Bessel functions of

the first kind to maximum accuracy."

4.3.3 The Computation of the Sk's

The Sk(x) functions of (3.7) are computed economically by using the

relations
(k+2)m = (k+l+m)(k+2)m_l, (3.14)
m! = m(m-1)!, (3.15)
Bl ~ Pk ¥ mrkL (3.16)
m m-1
and (z) = z(2) . (3.17)

The relations are used to generate the next term in the power series from

the present one and also to generate S (x) from Sk(x).

k+1
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4.3.4 Final Remarks on RHS

For the case 8 = 90°, (3.1) reduces to

RHS = Hél)(t)dt (3.18)
kz

which is written in series of Chebyshev polynomials in Equations (2.4),
(2.5), and (2.7). Table 4.1 gives the accuracy of the approximations (3.4)
and (3.6) for ©® = 90° using the Chebyshev polynomial expansions for (3.18)
as the standard. The term '"Digits of Accuracy" is explained in Appendix A.
This table shows that the real part of RHS is very accurate, but that the
accuracy of the imaginary part decreases rapidly with increasing argument.
The rapid deterioration of accuracy for the right-hand side for arguments
greater than 20 requires that the limits of integration of the integral
equation (1.9) be set at 20 or less. Graphs of RHS for 6 = 45°, 90°, 135°,

and 180° and for arguments between zero and twenty are shown in Figure 4.2.

4.4 The Efficient Inversion of the Almost-Toeplitz Matrix

Throughout this section, the notation

X,

Xa

(4.1)

is used to represent a column vector x and its elements. An efficient

algorithm for the inversion of Toeplitz matrices has been developed by
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Table 4.1

Digits of Accuracy for RHS by Double Precision Evaluation
of Equations (3.4) and (3.6)

Digits of accuracy

X Real Part Imag. Part

5.0 15.0 14.1

10.0 15.1 12.1

20.0 14.6 7.6

30.0 13.3 3.4

40.0 13.5 0.9

Notes: 1. 16 digit accuracy possible.

2. All summations truncated after 85 terms.
3. For x greater than 40, the imaginary part becomes very large.
4. RHS is given by Equation (3.3).
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Preis (1972). An earlier discussion of Toeplitz matrix inversion is given
by Bareiss (1969). The matrix equations (1.12) and (1.13) may be written

as

(T+L)yx=y (4.2)

where, in the notation of Section 4.1.3, T is the Toeplitz matrix

105 N
2205 N-1
(4.3)
1 25 B
and L is the matrix
L= L 0 0 (4.4)
with
217 %
z, - t,
L = and 0= (4.5)
2y = ty

Here zg is either r, or p,. These are given by (1.15) and (1.16), respec-
-1
tively. ty is given by (1.17). Multiplying (4.2) by T =, the inverse of

T, one obtains
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(I +Mx=c (4.6)

where I is the identity matrix, M is the matrix

M m 0 0 4.7)

with
m=T" &, (4.8)

and ¢ is the vector

e=T y (4.9)

Solving (4.6) for x obtains

(4.10)

After m and c are obtained using the efficient Toeplitz matrix inversion

routine, the solution vector x is readily obtained from (4.10).

4.5 The Results
The integral equation (1.9) for the E-polarization half-plane current

{1

g IPO}(Z') is solved here by the method of moments using the almost-
Toeplitz matrix inversion algorithm. Two expansion function sets are used.
Results due to a hybrid expansion function set are compared with results
due to an all-pulse expansion function set. The expansion function sets
are described in Section 4.1.3. The standard approximation to which both

will be compared is obtained by subtracting (1.5) from Equation (3.3) of

Chapter 3. After careful study of this standard, the subsection half-width
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H is chosen to be
H = 0.05. (5.1)

This is small enough that

i ¢
so that the edge expansion function closely approximates the actual current
over its range of applicability. The diminishing accuracy of the imaginary
part of (3.3) for arguments greater than 20 requires the upper limit of
integration to be about 20. For a total of 200 subsections, this upper
limit becomes 19.95. A total of 200 subsections are used for both the
hybrid and the all-pulse expansion function sets. For each of these sets,
computations are carried out for the four angles of incidence 6 = 45°, 90°,

135°, and 180°.

4.5.1 Accuracy of the Moment Method Results

The solution vectors for the hybrid expansion are plotted on top of
the standard in Figures 4.3 through 4.6 for the angles of incidence 6 = 45°,
90°, 135°, and 180°, respectively. The standard is computed using the
Chebyshev polynomial expansion for the Fresnel integral given by Luke (1969,
Volume II, Table 24, pp. 328-329). Agreement between the hybrid expansion
moment method solution and the standard is generally excellent. Diffi-
culties do occur, however, around kz = 20 at least to some degree for all
angles of incidence. Comparison of results for truncation points of 15 and
20 shows that the same behavior is exhibited around 15 for the former case

as is exhibited around 20 for the latter. Therefore, it seems valid to say
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that the inaccuracies around 20 in these figures are due to the truncation
of the integral at 20. The results for the all-pulse expansion function
set away from the edge are similar to those for the hybrid expansion. The
hybrid expansion is much better than the all-pulse expansion for points
close to the edge. Figures 4.7 and 4.8 emphasize the behavior of the two
approximations near the edge for 8 = 45° and 180°, respectively. For both
angles of incidence, the solution vector for the hybrid expansion is a
better approximation to the standard than that for the all-pulse expansion.
It is obvious that the inverse square root expansion function is a better
approximation to the standard than is the edge pulse expansion function.
It is not clear whether the height of this edge pulse has any significance.
Relations between the all-pulse expansion solution and the hybrid expan-
sion solution for the first two elements are derived in Section 4.5.2.

The explicit edge behavior of the solutions are compared to the stan-
dard in Figures 4.9 and 4.10 for 6 = 45° and 180°, respectively. For
6 = 45° the agreement of the hybrid expansion solution with the standard
is acceptable. For 6 = 180° it is excellent. This is because for 6 = 180°
the Fresnel integral term in (3.3) of Chapter 3 drops out. Table 4.2 gives
the accuracy of the edge coefficients for all four angles of incidence.
The accuracy of the real part for 6 = 45° is quite low because, as Figure
4.9 shows, the moment method attempts to fit the standard over the sub-
section width in some average sense. The low accuracy is also due to the
fact that the standard is computed at the edge, while the numerical solu-
tion is some type of fit over the subsection width. This makes meaningful
comparisons difficult, but this table does show relevant trends in the

accuracy of the fit.
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Table 4.
Accuracy of the Inverse Square Root Expansion Function
Coefficient
Digits of Accuracy Decimal Offset Factor
7 Real Imag. Real Imag.
45° 0.7 2.1 0.4 0.4
90° 0.8 2.4 0.1 0.1
135° 1.0 1.8 -0.02 -0.02
180° 2.3 1.6 -0.05 -0.05
Notes: 1. Standard is computed at the edge and is

2 s

Z

2. Subsection

\
in —
1+ 1i)
0
half-width H is 0.05.
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The relative accuracies of the moment method solutions are compared to
the standard for the hybrid expansion and for the all-pulse expansion in
Tables 4.3 and 4.4, respectively. Numbers for the case of normal incidence
are shown, but similar numerical trends appear for the other angles of inci-
dence as well. The relative error is found at each match point except the
first by comparing the moment method solution with the standard evaluated
at the subsection midpoint. At some points the error is found to be very
large. With the standard very small and the moment method solution several
orders of magnitude larger, but still near zero, the relative error is
quite large. This often occurs around zero crossing points because the
moment method does not give answers as close to zero as the standard does.
The average relative error is computed excluding errors greater than 15%
for the top half of each table and excluding errors greater than 1% for
the bottom half. The 15% and 1% figures correspond to 0.8 digits and 2.0
digits of accuracy, respectively. The term "Digits of Accuracy" is ex-
plained in Appendix A. With proper exclusions, the average relative error
over each range given is found and the digits of accuracy figure given is
—log10 of this. Also given (preceded by a slash) is the total number of
points included in taking the average. Four ranges of subsections for
averaging are used. The accuracy of the moment method solution in the
neighborhood of the edge is checked over subsections 2 through 6. Figures
are also given for subsection ranges 2 through 150, 151 through 200, and
2 through 200. These figures show the effect of truncation of the infinite
integral. Over the range 151 through 200, the accuracy of the hybrid ex-

pansion solution and that of the all-pulse expansion solution are very



Average Digits of Accuracy for the Hybrid Expansion

Table 4.3

Solution Over Several Ranges
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Range of
subsections Total
for averaging S.S. Real Imag. Mag. Phase
Data with less than 0.8 digits of accuracy
excluded in average
2 -6 1.2 1.9 2.1 1.8
/5 /3 /5 /5 /5
2 - 150 2.3 2.1 2.6 2.4
/149 /145 /148 /149 /149
151 - 200 1.4 1.6 1.6 1.7
/50 /46 /42 /49 /45
2 - 200 1.8 1.9 2.1 2.1
/199 /191 /190 /198 /194
Data with less than 2.0 digits of accuracy
excluded in average
2 -6 2.3 2.6 2.2
/5 /0 /3 /3 /3
2 - 150 2.7 2.4 2.6 2.7
/149 /130 /118 /147 /138
151 - 200 2.2 2.3 2.3 2.3
/50 /23 /15 /25 /21
2 - 200 2.6 2.4 2.6 2.6
/199 /153 /133 /172 /159
Notes: 1. 6 = 90°, H = 0.05.
2. The number preceded by a slash is the number of conforming data

points included in the average.
3. The digits of accuracy figure used here is —loglo (average
relative error).

4., 3 digits = 0.1%, 2 digits = 1%; 1 digit =

10%.
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Table 4.4

Average Digits of Accuracy for the All-Pulse Expansion
Solution Over Several Ranges

Range of
subsections Total
for averaging S.S. Real Imag. Mag. Phase
Data with less than 0.8 digits of accuracy
excluded in average
2 -6 1.0 1.1 1.2 1.5
/5 /2 /4 /4 /4
2 - 150 1.5 1.5 2.2 1.7
/149 /134 /135 /148 /143
151 - 200 1.4 1.4 1.6 1.5
/50 /47 /40 /49 /43
2 - 200 1.5 1.4 1.9 1.6
/199 /181 /175 /197 /186
Data with less than 2.0 digits of accuracy
excluded in average
2 -6
/5 /0 /0 /0 /0
2 - 150 2.3 2.3 2.6 2.1
/149 /40 /33 /130 /45
151 - 200 2.3 2.3 2.3 2.3
/50 /9 /10 /26 /8
2 - 200 2.3 2.3 2.5 2.1
/199 /49 /43 /156 /53
Notes: & = 90°, H = 0.05.

The number preceded by a slash is the number of conforming data
points included in the average.

The digits of accuracy figure used here is —loglO (average
relative error)

3 digits = 0.1%; 2 digits = 1%; 1 digit = 10%.
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close to each other, while over the range 2 through 150 they are somewhat
different. This seems to indicate that truncation most seriously limits
the accuracy of those elements in its vicinity and allows us to say that
the truncation has negligible effect over subsections 2 through 150.

Comparison of the results over the range 2 through 150 shows that
the answers for the hybrid expansion are much better than those for the
all-pulse expansion. Consider the bottom portion of each table where
accuracies of less than two digits are excluded in the average. Although
the figures for digits of accuracy appear to be comparable, the true story
is told by the number of terms included in the respective averages. For
the hybrid expansion, 130, 118, 147, and 138 points are included out of a
possible total in each case of 149 while for the all-pulse expansion, only
40, 33, 130, and 45 points are included for the real part, imaginary part,
magnitude and phase, respectively. Note that the magnitude of the all-pulse
expansion is accurate to nearly the same degree as is that of the hybrid
expansion. Inaccuracies in the phase for the all-pulse expansion seems
to spoil it.

The accuracy of the hybrid expansion is much better in the vicinity
of the edge than is the all-pulse expansion as the numbers for the range
2 through 6 show. This is consistent with conclusions drawn from visual

study of Figures 4.7 and 4.8.

4.5.2 The Relation Between the Hybrid Expansion Solution and the All-Pulse

Expansion Solution

It is often asked, "What is the significance of the value of the solu-

tion for the edge pulse in the all-pulse expansion and how does it relate
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to the value for the hybrid expansion?" The answer to this question is
discussed here.

The matrix equation for the hybrid expansion is
Ax = (5.3)
and that for the all-pulse expansion is
APxP = y. (5.4)

Ar and AP are the matrices given by (1.14). xr and xp are the solution
vectors for each expansion and v is the right-hand side common to both

equations. Subtracting (5.3) from (5.4), one obtains

ATx" = aAPxP (5.5)
T P
or (R + TL)E_ = (P + TL)x (5.6)
where R = r O 0 | (5.7)
P = IE_ 0 0 =+ O I (5.8)
and
TL =T - }t 0 0 ’ (5.9)

Here T is the Toeplitz matrix of (4.3) and t is the first column of this

matrix. r and p correspond to the first column of AT and AP as given by
-1

(1.14), respectively. After multiplying by T =~ and simplifying, Equation

(5.6) becomes

1

TR+ I)x = e + 1) %P (5.10)
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where IL is the identity matrix I except that the first element in the

s . . . r .
first row is zero instead of one. Solving for x  yields

-1
(T "p)
X, = 1 x? (5.11)
(T "),
and -1

r_ p -1 T

x =x + | (T "p), - B - (T "r). Sk j > 1. (5.12)
I iy, hj

Here the notation (T__E)n represents the nth element in the column vector
T_lw. \
If (T_lg)l, (T "r).. and xI are known, then the first element in the

hybrid expansion solution, xX,, may be found from (5.11). Similarly, the

1
rest of the elements in the hybrid expansion solution may be found from the
elements of the all-pulse expansion solution by using (5.12).

Figure 4.11 gives plots of the results near the edge for 6 = 135°.
Identical plots, except for 8 = 45° and 180°, are given in Figures 4.9 and
4.10. It is interesting to note that all three curves cross at about the
same point in these figures. It is not known if there is some simple ex-
planation for this. The crossing point in these figures is located at about
VH/8 where H is the width of the edge subsection and is 0.05 in this case.

This makes

x. = /H/8 xP. (5.13)

Hypothesizing that this relation holds for all H and experimenting with

subsection size gives the results presented in Table 4.5. The accuracy of
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the coefficient for the inverse square root edge expansion function is
compared with VH/8 times the coefficient of the edge pulse in the all-
pulse expansion. For values of H of 0.05, 0.1, and 0.4, the relative
error in making the approximation of (5.13) is about 1%, 3%, and 10%,
respectively. For many purposes, and especially for small subsection
size, use of (5.13) proves to be an adequate approximation to (5.11).
Study of the numerical results and of Figures 4.7 and 4.8 indicates
that a correction to the all-pulse solution for the second subsection may
also be necessary, but that a correction is probably not needed for the
other subsections. Explicitly writing (5.12) for the second subsection

gives \

x5 = xP + (T—lp)2 _— (5.14)

Hypothesizing that each of the terms in the bracket are simple functions

of H, the subsection half-width, results in the empirical formulas

T (1-1m/31), (5.15)
H2
—_ (5.16)
-1 2 . 2 2.2
(T B)l = (57 -1+/6/m H7)/10m - i(v/13)°H [1-w(n/13)"H"], (5.17)
and
-1 V8n 2. . 1.4Y0 2
(T R)Z = 100 [(1+(1.36H)"] -i ~—an  H [1-(1.8H)7]. (5.18)
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These are obtained using standard curve fitting techniques applied at two
points. The equations are written using constants and operations that are
readily available on an HP-45 calculator. When the actual numbers are
used, values computed at other points often match to 6 digits. Much better
curve fits could certainly be given using six digit numerical values in-
stead of the simple values given above.

The accuracies of the empirical formulas are compared to the actual
numerical values in Tables 4.6 through 4.9 for four values of H. As these
tables show, the agreement is very good.

The form of Equations (5.15) through (5.18) is not completely sur-
prising. Study of the first row of T ~ shows that Im(T l)li is roughly
proportional to %u The results of Appendix B show that the elements of r
and p are proportional to YH and H, respectively, at least in some approx-
imate sense. This makes the elements of T_lr proportional to H_% and those
of T—lp to 1. That (T "p). is close to 0.5 might be guessed by remember-
ing that the range of integration for the elements of p is H while that of
t is 2H. Since (T t). = 1, it makes sense that (T—lg)l - 0.5.

Substituting the empirical formulas in (5.11) and (5.14) gives

x' = q. (H) xi (5.19)
and
xf = XE + q, (H) XE (5.20)
where
2 . 2 2.2
a, () = (57 ~1+/6/w H7) /10w - i(n/13)"H [1-m(n/13)"H"] .5 (5.21)

7% (1-1[1H/31)
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Table 4.

Comparison of the Empirical Formula for (Tn1 )
with Numerical Results

Number of matching Number of matching
Numerical value decimal places digits
H of (T_lr)l Real Imag. Real Imag.
18.8263
0.005 2.8 2.8 4.1 1.4
-i0.0328
5.9527
0.05 2.9 3.7 3.7 2.7
-i10.0990
4.2091
0.1 3.0 3.6 3.6 2.7
-10.1401
2.1033
0.4 2.8 3.5 3.1 2.9
-i0.2810
-1 1T1/4
Empirical formula: (T "r). = —5 (1 - i[H/3])
H

Notes: 1. The numerical value is used as the standard for the calculation
of matching digits.
2. These numbers are approximately independent of matrix order for
orders greater than ten.
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Table 4.

Comparison of the Empirical Formula for (T_l )
with Numerical Results

Number of matching Number of matching
Nume rical value decimal places digits
H of (T—lr)2 Real Imag. Real Imag.
-2.1725
0.005 2.8 4.8 3.2 3.0
-i0.0141
-0.6853
0.05 3.1 2.7 3.0 1.3
-i0.0421
-0.4804
0.1 2.8 2.5 2.5 1.3
-i0.0593
-0.2009
0.4 2.0 1.9 1.3 0.9
-i0.1068
1/2 1/4 . ;5=
Empirical formula: (T “r). = —<§—~—§7:— et >/3 H
15 B’

Notes: 1. The numerical value is used as the standard for the calculation
of matching digits.
2. These numbers are approximately independent of matrix order for
orders greater than ten.
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Table 4.8

Comparison of the Empirical Formula for (T
with Numerical Results

Number of matching Number of matching
Numerical value decimal places digits
H of (T_¥R)l Real Imag. Real Imag.
0.468196
0.005 4.6 4.9 4.3 1.4
-10.000305
0.468283
0.05 5.3 5.6 5.0 3.1
-i0.002916
0.468606
0.1 5.6 5.3 5.3 3.1
-i0.005825
\
0.475197
0.4 5.0 4.6 4.6 3.0
-i0.022651

1

- 2
Empirical formula: (T o). = (57 - 1 +v6/w H)/101

., T2 m.,2,.2
- i 13) H[1l - "(13) H™]
Notes: 1. The numerical value is used as the standard for the calculation
of matching digits.
2. These numbers are approximately independent of matrix order for
orders greater than ten.
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Table 4.9

Comparison of the Empirical Formula for (T_lp)
with Numerical Results

Number of matching Number of matching
Numerical value decimal places digits
H of (T_¥R)2 Real Imag. Real Imag.
0.050147
0.005 4.9 5.2 3.6 1.3
~10.000131
0.050370
0.05 5.3 5.8 4.0 2.8
-i10.001232
0.051065
0.1 5.3 5.6 4.0 3.0
-10.002404 \
0.064024
0.4 3.0 4.9 1.8 2.6
-10.004793
- % 2 Y 2
Empirical formula: (T ¥E)2 = 1%%-[1 + (1.36H)] - i lE%GE-H[I - (1.8H) 7]

Notes: 1. The numerical value is used as the standard for the calculation
of matching digits.
2. These numbers are approximately independent of matrix order for
orders greater than ten.
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and
Br 2  aee 2
qZ(H) 166'[l+(1.36H) ] -1 100 H [1-(1.8H)"]
+q, () el V3/3 1 (5.22)
15 H*
Table 4.10 compares the numerical results for xi and xg with ql(H)xg and
X, + a.(H)x!. respectively. Comparisons are given for four subsection

sizes. The error is generally less than 1% and in some cases is less than
0.1%Z. For most purposes, these formulas give answers that are more accu-
rate than they need to be in light of the fact that the error introduced
in using the moment method is often quite large.

The empirical formulas (5.15) through (5.18) are also useful for

p p

t t t . .
from x; and x.,. x 1s the solution of

btaini r r
obtaining Xy, X,, X 1 2

, and x

Tx = (5.23)
where T is the Toeplitz matrix in (4.3). Using the facts that (T—lt)l =1
and (T_l_t)2 = 0, it may be shown that

T t -1
x = xl/(T r)l, (5.24)
X = xl/(t (5.25)
t -1 -1 t
Xy = X, - [(T r)2/(T r)l] X, (5.26)
-1 -1 t
and = v - [T,/ (T Pl % . (5.27)

Although these formulas look simpler than those relating x and x , the

P

accuracy of the solution x~ is less than that of x° which is less than that
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101

Comparison of the Values of the First Two Elements in
the Solution Vector for the Hybrid Expansion with the

Values Obtained Using the Corresponding Elements for
the All-Pulse Expansion and the Empirical Formulas

Number of matching digits

r
Xy compared to X, compared to
ql(H)Xi xg + q2(H)xp
H Real Imag. Real Imag.
0.005 1.8 1.9 2.4 2.5
0.05 3.6 3.7 3.0 3.1
0.1 3.6 3.7 2.5 2.7
0.4 3.6 3.0 2.3 1.5
Notes: 1. 6 = 135° for comparisons, but result does not depend on

2. The numerical values of x{ and XE are used as the standard

for the calculation of matching digits.
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T . S . .
of x". For this reason, it is very desirable to use the almost-Toeplitz

p’ at least, instead of the Toeplitz algorithm to

algorithm to obtain x
obtain xL. If only x~ is available, Table 4.11 gives the accuracy that
would be obtained if (5.24) through (5.27) and the empirical formulas were
used to modify the values of the first two elements. For the case given,
the relative error is less than 0.17%.

If the right-hand side of the matrix equation (5.23) is peaked around

. . , t . .
the first element, then approximations to x, may be easily obtained. The

1
right-hand side of the integral equation, given by (3.1), is such a func-
tion (see Figure 4.2). Table 4.12 gives the values of the first few
elements of T—-l along with the number o£ matching digits for various orders
of matrices. The inverse is clearly peaked around the first element and
rapidly decreases away from this element. If the right-hand side v also
decreases away from the first element, then because of rapid convergence
properties it is acceptable to use only a few terms to evaluate (T
instead of the full number of terms. Reasonable answers for (T “v). are
obtained for a matrix of order ten, and surprisingly good answers are
obtained for matrix orders between ten and three.

Following the above argument, it can be seen that terms of the form
(T "'rYy or (T _E)n’ as given in (5.11) and (5.12), are approximately in-
dependent of the order of the matrix T, at least for the first few elements
(small n). It is this property that allows the empirical formulas (5.15)
through (5.18) to be given as functions of H only. The empirical formulas

are approximately independent of matrix order as long as the matrix order

is ten or more and two or three digit accuracy is sufficient.
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Table 4.1

Comparison of the Values of the First Two Elements in
the Hybrid and All-Pulse Expansion Solution Vectors
with the Values Obtained Using the Corresponding
Elements in the Toeplitz Solution Vector

Number of matching digits

Comparison Real Imag.
X, 1 3.8 3.7
(T r)l
X, 4.0 4.6
(T‘lr)2 .
x2 - g X 3.0 3.1
(T "r)
-1
(T p_)2 "
X. X, -~ 70 % 3.4 4.3
(T "p)

Notes: 1. H = 0.05 and 6 = 135° for all comparisons. The empirical
formulas are used to compute all T~lr and T'lg_terms.

x; : hybrid solution

x? : all-pulse solution

t . .
X, Toeplitz solution

. r
3. The numerical values of xj and x? are used as the standard
for calculation of matching digits.
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4.6 Conclusion

For the E-polarization, the CSF approach and the ordinary approach
are virtually the same. In both cases, the same integral equation must
be solved by the method of moments. A comparison of the moment method
results for the induced current with the exact results shows that the
moment method is reasonably accurate. It is also shown that the use of
the hybrid expansion yields better accuracy than does the use of the all-
pulse expansion. For many purposes, however, the all-pulse expansion
solution will suffice as long as the values of the first two elements are
corrected using the empirical formulas. The complete computer program for
the E-polarization half-plane problem is given in Appendix D. The results
of this chapter are used in the next chapter to generate results for the

H-polarization by using the current source-function technique.
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5. THE NUMERICAL SOLUTION OF THE HALF-PLANE PROBLEM BY THE CURRENT

SOURCE-FUNCTION TECHNIQUE: H-POLARIZATION

The closed form solution of the half-plane problem with H-polarized
incident field by the CSF technique is presented in Chapter 3. Numerical
procedures for the application of the CSF technique to this same problem
are described here. The numerical results for {IE - IPO} that are de-
scribed in the previous chapter are used to obtain numerical results for
{IH - 1 . the H-polarization current minus the H-polarization physical
optics current. Mayes (1972) and Prettie and Dudley (1974) have worked on
the numerical solution of the problem of scattering of a plane wave from a
cylindrical rod using the CSF technique. Some unresolved questions about
their results further motivated the present work on the half-plane problem

which has been discussed elsewhere by Hanson and Mayes (1975).

5.1 The Current Source-Function Technique Applied to the Half-Plane

Problem

The configuration for the H-polarization half-plane problem with plane
wave incidence is given in Figure 2.1(b). The CSF technique, as is de-
scribed previously, is a two step process. In the application to the half-

plane problem, the first step is to solve the integral equation

[o2]

Fp| u,(z') H J')(k|z—z'|)dz' = — sinb e-lkz cosd z >0, (1.1)
H 0 Z0

for uH(z'). The second step is to find the current IH from
IH(z) = uH(z') g(z,z')dz' —o < z < (1.2)
0
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In the numerical work at hand, the solution for {lE - I_}, given in the

PO

last chapter, is used to find 1 This is necessary because the moment

9°

method results for the difference {I. -

B IPO} are available directly.

5.1.1 The Physical Optics Current for the H-polarization,

The physical configuration of the H-polarization physical optics pro-
blem is just that given by Figure 2.1(b) except that the conductor extends
to infinity in all directions. Although the CSF technique does not require
that a solution be found in terms of {IH - Ipo}’ this difference is used
because it is of the same form as the solution {IE - IPO} for the E-
polarization is. Following steps similar to those outlined in Section 4.1.1
for the E-polarization case, the H-polarization physical optics current be-

comes

I = Z__e—lkz cose’ (1.3)
po Z0

Lower case "po" is always used to indicate the H-polarization physical

optics current while upper case "PO" is always used for the E-polarization.

5.1.2 The Solution for u the Current Source-Function, in Terms of {IE-I }

H’ PO

The rigorous solution for u the H-polarization current source-function,

H’

is given in Chapter 3. Recall that Uy is a solution of the integral equation

Fp| u,.(z') H(l)(k|z—z'])dz' = — s5inb e—lkz cose, z >0, (1.4)
H 0 Z0

where uH(z') satisfies the edge condition
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3,
uH(z') =0(z'%) as z' -+ 0. (1.5)

Also recall that the solution of this integral equation, given by (4.2) of
Chapter 3, is made up of two parts. The first part is the one that repro-
duces the right-hand side. This part is simply the locally integrable

solution to the integral equation and is

sinb v(z') k2 sinb Ii(z')1+(z') =

kz sinb {Ie - IPO}(z')l+(z') + k2 sinb Ieo(z')l+(z').
(1.6)
The second equality is obtained by adding and subtracting k2 sin® Igol+ in
the first equality.
The other part of the solution to the integral equation (l.4) is the

part that does not violate the edge condition (1.5) and satisfies the

homogeneous finite part integral equation

Fp| w(z'") Hél)(klz—z'l)dz' =0, z > 0. (1.7)
0
A solution to this homogeneous equation may be obtained by differentiating
the integral equation [see Section 3.3.3] for I- for normal incidence which,

upon adding and subtracting IP01+ in the unknown, becomes

2 - [} ]- 1] | -
k ( ‘{IE - I;O} 1+(z') + I-. l+(z )J HO )(klz—z I)dz = —,

z >0, (1.8)
where the superscript . indicates the quantity is evaluated for 6 = 90°.

Differentiating both sides of this equation with respect to z and using
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(4.12) of Chapter 2 gives
l |{I - T ML (z') + I35 1, (2") E»—rH(l)(]zclz—z'|)dz' =0
E ) PO+ oz' 0 i
z >0, (1.9)

Integrating by parts and utilizing the properties of the finite part

yields
_ T L 9 (l) | '
l [{IE -t + IPOl o, Hy ' (k|z-z'|)dz
2 (1) 2 L1
= — _ Lo gt Ly ! '
K"1,,(0) Hy™ (k[z]) - k Fpl 5 15 = Ipod + 557 |Hy (k]z-z'|)dz

I BIPO 1)
= -k - 13 ' ' ! '
K Fpl dz' ““E IPO} *t 50 1,(@" + IPO5(Z )}HO (k|z-z'|)dz
(1.10)
Thus,
Y - 1- L 1 , _ ‘
wizh) =k Pflaz' {If - Ippt| 142" + k7 I,y 8(27) (1.11)

since the BIPO/BZ' term vanishes. This is a solution of (1.7) which sat-

isfies the edge condition. A complete solution of (1.4) is then

uH(z) = A w(z) + sinb v(z)

2 g Lot 2
k™A Pf|( Yy {IE IPO} )l+(z) + kA IPOG(z)

2 . 0 0 2 .
+ k" sin6 {I -1 O} l+(z) + k~ sin6 IP01+(z) (1.12)

where A is a constant.

It is interesting to note the behavior of u, as the argument approaches

H

infinity. The first three terms in (1.12) vanish leaving
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u (z)"k2 sin® I?A(z) as z -+ o, (1.13)
H r0

This makes

2 2 2 ~ikz cos®

upO = 2—-k sin" 0 e (1.14)
0
Substituting the expression (1.3) for I in the equation for Ups
d'IH
uy = ——z—-+ k IH’ gives
dz
2k2 2 -ikz cos®
u =_-————s5in"0 e . (1.15)
po Z0

It is reassuring to obtain the same result in each of these two ways.
The solution for u,, must satisfy the consistency condition in order
to obtain a unique solution for IH' From Equation (4.13) of Chapter 3,

the consistency condition simply states that

oo

kz'

uH(z') ei dz' = 0. (1.16)

Substituting the expression (1.12) in the above equation and solving for

ikA gives
i 4 c0s2(8/2) + Kk sind ‘ (18- 1%y %,
kA = 0 . (1.17)
. 2 L1 ikz
iy + k’ {IE IPO} dz

0 0

This is the value that must be used for A in (1.12). For normal incidence,

ikA = 1. This agrees with (4.19) of Chapter 3.
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5.1.3 The Solution for {I,, - I } in Terms of {I_ -
H po I rov

The closed form solution for I, is given by (5.14) in Chapter 3.

H
It is shown that
IH(z) = uH(z') g(z,z')dz", - < z < (1.18)
where
iklz—z'| ik(z+z"')

g(z,z') = EEE’[ (1.19)

Substituting (1.12) into (1.18) yields

G| —
+ k2A I_ (0) l 8§(z') g(z,z")dz' + k2 sin® {(r° - 1._21% g(z,z')dz"'
PO ’ E PO ’
2 _. v ' '
+ k” sinb lPO g(z,z")dz". (1.20)

By integrating by parts, the first integral above becomes

PE( v {Ig - I,0} )1, (2") glz,2")dz" = - -

E
(1.21)

The second integral is zero since g(z,0) = 0. The third integral remains

unchanged. The last integral becomes

IPO(z') g(z,z')dz' = ———— (e_lkz cosd —elkz). (1.22)

ZO sind® k
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after using (1.5) of Chapter 4. These equalities are valid for z > 0

only. Equation (1.20) becomes

= - - ' ' —ax v ' '
1H k™A {IE IPO} - g(z,z')dz' + k™ sin®| {I IPO} g(z,z')dz

-ikz cos6 ikz
-e )

+ fi (e (1.23)

0
The first part of the third term in this equation is just Ipo' Taking
this term to the other side of the equation and letting h(z,z') =

§—~<g(z,z') gives

o _.._._2 1 ' ' - o 0 _ ' '
{IH 1} kA {IE IPO} h(z,z')dz' + k™ sin8| {I_ IPO} g(z,z')dz

PO

- e ) (1.24)

where A is the constant given by (1.17). Each of the integrals on the
right-hand side of (1.24) is approximated using the numerical results of
Chapter 4 for {IE - IPO} weighted with either h(z,z') or g(z,z'). These

numerical integrations are detailed in the next section.

5.2 The Numerical Evaluation of {I, - I _}
H PO

The moment method numerical results of Chapter 4 for {I_ - IPO} are

E

used here to obtain the numerical results for {Iﬁ - Ipo} by applying
(1.24). Two integrals have to be evaluated numerically. From (1.24),

these are

1

{IE

- 1;0} h(z,z')dz" (2.1)
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and

(12 - 13} glz,2")az’ (2.2)

where the upper limit is set to L = 19.95/k [see (1.9) of Chapter 4]

instead of infinity because the integral equation for {Ig - Igo

} is
truncated at z = L. Making the change of variable z' = y'/k and letting

y = kz in (2.1) and (2.2), one obtains

kL
{IE - IZ_} h(y,y")dy' (2.3)
0
kL
- I} 8(y,y")dy! (2.4)
where
g(y,y") = E_iﬁ_(ei|y-y'| _ei(y+y')]’ (2.5)
and
h(y,y') = 4-v 8(z,2") = k 3y 8(7,y") (2.6)

It is convenient to break h(y,y') and g(y,y') into two parts, one

for y' < y and the other for y' > y. These expressions become

g_ (y,y")
g(y,y") <y (2.7)
g>y(y,y')
and
b Gy")
h(y,y') k == g(y,y') = (2.8)

'
by, (757"

where



114

kg (v,y") = - sin(y"), (2.9)

kg, (5" = eV sin(y), (2.10)

h<y(y,y') = -7 cos(y'), (2.11)

and h, (7,y') = -1 eI sin(y). (2.12)

This notation is used throughout this section. In order to simplify the
numerical evaluation of the integrals of (2.1) and (2.2) when a value of
y is given, it is desirable to determine the number of the subsection
that y (=kz) is in. If this number is called K, it may be found from the

equation

K = LL/H; +11,1 (2.13)
where the notation [x] represents the integer portion of x. Expressions
for the integrals (2.3) and (2.4) for both the hybrid expansion and the
all-pulse expansion are obtained.

The hybrid expansion for {IE - I__}, shown in Figure 4.1(a), is

PO
r xf y_% 0<y<H
{IE ) IPO}(Y) i 1 x? D.-H <y < D.+H N>j> 2?2-14)
J J J
The all-pulse expansion for {IE - IPO}’ shown in Figure 4.1(b), is
[xﬁ 0<y<H
{IE ) IPO}(Y) i L x; Dj—H <y< Dj+H, N>3j> 2?2.15)

where the xj's in both expressions are constants and

D. = 2(j-1DH (2.16)
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. . .th . .
is the midpoint of the j subsection. The expressions for K and Dj are

used throughout this section.

5.2.1 The Evaluation of the Integral Weighted by h(y,y"')

The integral (2.3) may be written in the form

Dyt

£G') b (ry")dy" + k| £(y') by (y,y")dy (2.17)

+H, and f(y')

where N (=200) is the total number of subsections, kL = DN

is given by (2.14) and (2.15) for the hybrid expansion and for the all-
pulse expansion, respectively. The numerical evaluation of this integral

for the hybrid expansion is aided by the identities

x
t = h_ (y,t)dt = -2 7 Re[F,(x)1, (2.18)
x
t 2 h. (y,t)dt = -2i sin(y) F, (x) (2.19)
0
D.+H
J 1y
h<y(y,y')dy' = -2 e sin(H) cos(D.), (2.20)
Dj—H
y
h<y(y,y')dy' = -2 " sin%(y—Dj+H) cosz(y+D.-H), (2.21)
D.-H
JrDj+H
i, (D, +i+
h>y(y,y')dy' = =21 sin(y) sin%(Dj+H—y) ele(Dj Hy) (2.22)
and D, +H
J ' ' . . . iD,
h>y(y,y )dy' = -2i sin(y) sin(H) e j (2.23)
D.-H
J

where F2 is given by (5.13) of Chapter 3. The evaluation for the all-

pulse expansion requires the additional identities
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X

' ' 1y
‘ h<y(y,y )dy

- e’ sin(x), (2.24)

and

iz(H+Y)_

i h>y(y,y')dy' -2i sin(y) sinz(H-y) e (2.25)
Substituting the hybrid expansion (2.14) in (2.3) and using the identities

above yields

DN+H
1 _ L ' y _ T 1y
2 | o} h(y,ydy' = x° eV RelF, ()]
N
+ i sin(y) (x][F.(H)-F.(y)] + sin(8) ) x. e i}, 0 <y <H,
j=2
! (2.26)
and DN+H
L1 . v - 1Y
{IE IPO} h(y,y')dy e X, Re[Fz(H)]
K-1
+ (K>3) sin(H) Z x. cos(D.) + x._ sin%(y—DKfH) cos%(y+DK—H)
j=2
i, (D +H+y) N r iD
+ i sin(y) sind (D, +H-y) e 2K Y7 4 (K<N-1)sin(H) ) x. e j
K K = . 3
j=K+1
y > H. (2.27)

In the above formulas, x~ is the moment method hybrid expansion solution
vector for 1L - IPO} that is obtained in Chapter 4. The corresponding

formulas for the all-pulse expansion (2.15) are obtained using (2.24) and
(2.25) to replace the terms involving the Fresnel integral. The logical
expressions preceding the summations are equal to one, if true, and equal

to zero, otherwise.
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5.2.2 The Evaluation of the Integral Weighted by g(y,v')

The integral (2.4) may be written in the form

y DN+H

k| £(5") g, (v,y")dy' + k| £(y") g, (v,y")dy’ (2.28)
0
where £(y') is given by (2.14) for the hybrid expansion and by (2.15) for
the all-pulse expansion. The numerical evaluation of this integral for

the hybrid expansion uses the identities

t 2 g . (y,t)dt = -2 ™ Im[F,(x)], (2.29)
0
X
t 2 g .(y,t)dt = -2 sin(y) F,(x), (2.30)
0
D.+H
h| 1y
g(y(y,y')dy' = =2 e sin(H) sin(D.), (2.31)
D.-H
Iy
g<y(y,y')dy' = -2 Y sin(y-D.+H) sing(y+D.-H), (2.32)
D.-H
Dj+H
f 1
8,y (¥>y")dy" = -2 sin(y) sinz(D +H-y) Z (D HHHY) (2.33)
and D +H
[ J iD
8,y (¥,y')dy' = -2 sin(y) sin(H) ej (2.34)
D.-H
3

where F2 is given by (5.13) of Chapter 3. The evaluation for the all-

pulse expansion uses the additional identities

Oyt = =2 e sin’ (x/2) (2.35)
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and u

8,,(y,y")dy' = -2 sin(y) sing(i-y) '), (2.36)

Substituting the hybrid expansion (2.14) in (2.4) and using the above
identities yields

DN+H

{1 - IPO} g(y,y")dy' = x' Im [F, ()] ety

+ (xf [F,(H)-F,.(y)] + sin(H) z xf e J) sin(y), 0 <y < H,

j=2
(2.37)
and DN+H
{Ie - Ie } g(y,y"Ddy' = e | x. Im [F,(H)]
0 1 2
K-1
. r . r P R s 1 _
+ (K>3) 31n(H).ZA xj 81n(Dj) + Xy sing (y DK+H) 31n2(y+DK H)
i, (D, +H+y) N r 1iD
+ sin(y) X, sing (D +H-y) e 2K Y 4 (K<N-1) sin(H) z X e ]
K K - .
j=K+1
y > H. (2.38)

In the above, x° is the moment method hybrid expansion solution vector

0

0
for {IE - IPO

} solved for in Chapter 4. The corresponding formulas for
the all-pulse expansion of (2.15) are obtained using (2.35) and (2.36)

to replace the terms involving the Fresnel integral.

5.2.3 The Numerical Evaluation of the Integrals Used to Find A, the Con-

sistency Constant

The consistency constant, A, is given in (1.17) in terms of two

integrals, each of which may be written in the form
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kL
\ ik
F__(8) - 1d e az =L | 1l - ) M ay  (2.39)

where the upper limit has been reduced from infinity to kL because the
integral equation for {IE - IPO}’ Equation (1.9) of Chapter 4, is trun-
cated at kL. Substituting the hybrid expansion (2.14) in the above yields

kL

1

9 ‘{IE - I
0

N
} e™ dy = x] F, () + sin(H) ] x§ ey, (2.40)

PO 122

The corresponding expression using the all-pulse expansion is

kL N
1 0 . . .
9 ’{IE - Igo} e’ dy = xP sin(H/2) el(H/z) + sin(H) Z xP ele.
=2
0 J

(2.41)

The closed form evaluation of (2.39) may be carried out using the known

analytic solution for {lg - 60} to obtain

Ip

_ -0 _ .6, ikz _2i 1 - cos(8/2)
F._(0) g~ Ipgl @ dz Kz, sin(8/2)

(2.42)

This equation is used in the next section to check the accuracy of the

numerical evaluation.

5.3 The Numerical Results for IH

In this section the formulas of the preceding sections are used to

find {IH - Ipo} from {IE - I..}. Results due to both the hybrid expansion

ro
and the all-pulse expansion for {IE - IPO} are compared to the standard

for angles of incidence 8 = 45°, 90°, and 135°. The standard is computed

from the closed form results. Only the moment method results for H = 0.05,
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kL = 19.95 (200 subsections) and 6 = 45°, 90°, and 135° are used. The
current for 8 = 180° is zero. The computer program used to generate

these results is given in Appendix D.

5.3.1 Accuracy of the Numerical Results for the Consistency Constant, A

In this section the accuracy of the numerical integration (2.39) for
FkL(O) is tabulated. The accuracy of the numerical evaluation of the
consistency constant A, also referred to as Aa, is also tabulated.

Consider the expressions for FkL(e) in (2.40) and (2.41). It is
helpful to watch the convergence of the series on the right-hand side of
both equations as the series is summed. Study of this progression indi-
cates that the real part, which should be zero, oscillates around zero

when the hybrid expansion solution for {lE - O} is used, but does not

IP
when the all-pulse expansion solution is used. This seems to indicate
that the hybrid expansion solution gives better answers than the all-
pulse expansion solution does. Table 5.1 gives the accuracy of the num-
erical results using each solution, and verifies the superiority of the
hybrid expansion solution, but only for the real part. Note that the
imaginary part, the most important part, is more accurate for the all-
pulse expansion solution. It should also be noted, however, that the
accuracy of the magnitude of the all-pulse expansion result is about the
same as that of the hybrid expansion result. The phase of the latter
result is much better than that of the former because the real and
imaginary parts of the result for the hybrid expansion are accurate to

about the same number of decimal places while those for the all-pulse

expansion are not. For these reasons, it may be said that the result due
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Accuracy of the Numerical Results for kZOFkL(e)
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Decimal places of accuracy

Hybrid expansion
results used for

All-pulse expansion
results used for

9 e 8
IPO IE - IPO Numerical
value of
Real Imag. Real Imag. standard
o
kZOFkL(45 ) 2.5 2.5 1.5 3.2 0.0
+i0.3978
kZOFkL(90 ) 2.5 2.3 1.3 \ 3.0 0.0
+10.8284
kZOFkL(l35 ) 3.5 2.3 1.1 3.1 0.0
+i1.3364
kZOFkL(lBO ) 1.9 1.9 1.1 1.8 0.0
+i2.0
Notes: 1. Decimal places = —log10 s-a| as defined in Appendix A.
2., All standard real parts are zero, so the numbers under
"Real" are = -loglo|a|.
3. Standard:
_ ) 6 iy, _ .. 1 - cos(8/2)
kzZqF,(8) = Zo‘ (Ig = Ipg)e "4y = 21 =5, (o /2)

0
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to the hybrid expansion is slightly better than the result due to the
all-pulse expansion. The poor accuracy obtained for the 6 = 180° case
might be expected because in Figure 4.6 {IE - IPO} is not negligibly
small at the truncation point of kL = 19.95.

The accuracies of the FkL(e) described above become important when
these numbers are used to obtain Ae, the consistency constant, from
Equation (1.17). Table 5.2 gives the decimal places of accuracy for
ikAe. The two cases shown are for 6 = 45° and 6 = 135°., For all angles
of incidence, the imaginary part of ikAe is, in theory, zero. It is
seen that ikAe obtained from the hybrid expansion exhibits accuracy to
about the same number of decimal places in both the real and the imagi-
nary part, while that for the all-pulse expansion does not. As is argued
above for FkL(e), this means that the ikAe that is evaluated from the
hybrid expansion is slightly better than that evaluated from the all-

pulse expansion. In conclusion, it may be said that the numerical for-

mulas for ikAe seem to converge quite well to the actual values.

5.3.2 Accuracy of the Numerical Results for {IH - Ipo}

The numerical results for {I.ri - Ipo} are plotted along with the
standard in Figures 5.1 through 5.3 for the angles of incidence of 45°,
90°, and 135°, respectively. The standard or "exact" {IH - Ipo} is
obtained from (5.14) of Chapter 3 and (1.3). For each case, two dashed
curves are plotted along with the standard. The fine dashed curve is the
{IH - Ipo} that is obtained from (1.24) when the hybrid expansion moment

method results for {lE t are used. The coarse dashed curve is that

"~ 10

obtained when the all-pulse numerical results are used.
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Table 5.2

Accuracy of the Numerical Results for ikAe, the
Consistency Constant

Decimal places of accuracy

Hybrid expansion All-pulse expansion
results used for results used for .
Numerical
6 6 0 6 values of
Ig = Ipo Iz = Ipo standard
ikA,
Real Imag. Real Imag.
ikA45t 2.8 3.0 3.2 1.7 1.3066
1kA135( 3.7 3.2 3.8 2.1 0.5412
Notes: 1. idikA = 1.0 and ikA = U.uU exactly.

90° 180°

2. All standard imaginary parts are zero, so the numbers under
"Imag." are = - loglo|a|.

3. Standard:
2 cos2(6/2) + sin 8(kZ.F_(8)/2i)

ikA. = = /2 cos(8/2)
1+ (kZ,F,_(1/2)/21)
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For all three angles of incidence, the finely dashed curve is in-
distinguishable from the standard. The coarsely dashed curve, on the
other hand, visibly departs from the standard for 8 = 45°. This suggests
that the hybrid expansion gives better answers for i1.. - Ipo} than the
all-pulse expansion does.

It is interesting to observe the edge behavior of {IH - Ipo} when
the two expansions for {IE - IPO} are used in (1.24). Figures 5.4 and
5.5 show plots of the edge behavior for 6 = 45° and 90°, respectively.
Results corresponding to the hybrid and all-pulse expansions are shown
with finely and coarsely dashed lines, respectively. It is clear that

the hybrid expansion result is much better than the all-pulse result and
1

2

that the former result has z* edge behavior whereas the latter does

not. This is not surprising in light of the fact that the hybrid expan-

1

2 edge behavior whereas the all-pulse expan-

sion for {IE - IPO} has z
sion does mnot.

It is desirable to compare the form of these results for {IH - Ipo}
with those that would be obtained if a moment method solution for 1.. were
found directly. As the graphs of Figures 5.1 through 5.5 show, the CSF
method produces continuous currents. A pulse expansion moment method
solution of an E-field integral equation would not have produced contin-
uous currents. For essentially the work of solving what is a pulse
expansion moment method problem, the final result takes the form of a
sine expansion function except with the important difference that both

the phase and the magnitude vary continuously. In all probability, the

current source-function method described here reproduces a local phase
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pPo

Results Corresponding to the Hy rid and the All-Pulse Expansion Solutions for 6 = 90°

Compa ison of the Exact Edge Behavior for {IH - I} with that of the ume ical
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behavior which is more accurate than could have been anticipated in the
choice of basis functions. That this is the case can be clearly seen by
looking at the phase in Figures 5.4 and 5.5. This contrasts with the
moment method which requires that an initial guess be made in the selec-
tion of expansion functions.

Although it is clear from the graphs of Figures 5.1 through 5.5 that
the hybrid expansion gives better answers than does the all-pulse solu-
tion, it is not clear exactly how much better the one is over the other.
Table 5.3 compares the average accuracies of Z.{I.. - Ipo} for the hybrid
expansion and for the all-pulse expansion. Two ranges and two angles of
incidence are considered. For each angfe, the average accuracy of a group
of points near the edge and of an overall group of points is given. Aver-
ages are tabulated for 6 = 45° and 6 = 90°. The averages for 6 = 135°
are similar to those for 6 = 90°.

Generally speaking, Table 5.3 shows that the results for the hybrid
expansion are about one digit better than those for the all-pulse expan-
sion. This means that if the hybrid results are good to an average of 1%,
then the all-pulse results are good to only 10%. The results for 6 = 90°
are better than those for 6 = 45° by an average of 0.5 digit. This in-
accuracy for 6 = 45° is clearly visible in Figure 5.1. Thus, while both
the hybrid and the all-pulse results for 6 = 90° and 6 = 135° appear to
be equally accurate in the graphs, this is not true. The hybrid results
are always more accurate than the all-pulse results. This underscores
the need for using a hybrid expansion if the best possible results are

desired.
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Table 5.3

Accuracy of Z {I_ -1 } for 6 = 45° and 6 = 90°
0" "H po

Edge Overall

Hybrid All~-Pulse Hybrid All-Pulse

Average decimal places of accuracy

6 = 45°
Real 2.5 1.3 2.8 1.8
Imag. 2.0 1.3 2.7 1.8
Mag. 2.8 1.3 2.5 1.8
Average digits of accuracy
Phase 2.7 1.9 | 3.3 1.3
Average decimal places of accuracy
6 = 90°
Real 2.6 1.4 3.3 2.4
Imag. 2.1 1.4 3.3 2.4
Mag. 2.8 1.5 3.1 3.4
Average digits of accuracy
Phase 2.8 2.0 3.0 1.8
Notes: 1. "Hybrid" and "All-Pulse'" refer to the expansion used for

2. "Edge" refers to 100 points equally spaced between 0 and
0.05 (see Figures 5.4 and 5.5).

3. "Overall" refers to 399 points equally spaced between 0.05
and 19.95 (see Figures 5.1, 5.2, and 5.3).

4. The standard is given by (5.14) of Chapter 3 and (1.3).
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5.4 Conclusion

The results shown here demonstrate that the current source-function
technique is suitable for numerical application. Even more important is
the fact that this technique gives a numerical result that is continuous,
The numerical result is also identically equal to zero outside of the
domain of application. The technique, although relying on the moment
method solution of an integral equation, yields a result for the current
for any desired argument rather than at a finite number of points. The
phase of the CSF solution exhibits a good approximation to the actual
local behavior. Accurate detailed information about the behavior of the
unknown current is available from the CSF solution by simply evaluating
the superposition integral at a larger number of points. This does not
require increasing the number of basis functions used to represent the
current as is the case with the moment method solution of Pocklington's

or Hallen's equations.
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6. SCHWARTZ DISTRIBUTION THEORY AND THE STRIP PROBLEM

This chapter applies the CSF technique to the problem of electro-
magnetic scattering of an incident plane wave by a finite width perfectly
conducting strip. Although the analytic procedures developed for the
half-plane problem would seem to be applicable to this problem a complete
description of the solution is still to be found. To complete the proce-
dure, an even solution of the homogeneous finite part integral equation
is required. The CSF technique for the strip problem is described in
terms of Schwartz distribution theory. This insures that each procedural
step has a well-defined meaning. De Jager (1969, p. 78) comments that
(instead of using the finite part) supersonic wing theory '"can be developed
in a much shorter and more elegant way by employing the theory of distri-
butions."

Section 6.1 presents the formulation of the strip problem and results
of some previous studies. Section 6.2 introduces the concepts of distri-
bution theory which are employed in the CSF approach to the strip problem.
The remaining sections present the results obtained so far in applying the

CSF technique to the strip problem.

6.1 The Strip Problem

The problem of scattering of a plane wave by a conducting strip is
well-known. The geometry for the strip problem is the same as that for
the half-plane problem, given in Figure 2.1, except that the metal extends
from -b to b, i.e., -b < z < b. The exact solution has been found by con-
sidering the strip as a limiting case of an elliptic cylinder. Unfortu-

nately, this solution is in terms of an infinite series (of Mathieu
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functions) which is not rapidly convergent. Descriptions of the exact
solution to the strip problem are given by McLachlan (1947, p. 358) and
Meixner and Schafke (1954, p. 373). <Calculations of Mathieu function
series for relatively narrow strips have been performed by Strutt (1931)
and Morse and Rubenstein (1938). Moullin and Phillips (1952) use Morse
and Rubenstein's expansions to calculate the current distribution on the
strip. Miles (1949) gives the exact solutions of the integral equations
for the current on the strip in terms of an infinite series of Mathieu
functions. Dorr (1952) shows that the E-polarization strip integral equa-
tion has even Mathieu functions as eigenfunctions.

The E- and H-polarization integral equations for the currents IE(z)

and TH(z) on the strip are, respectively,

b
[ (1) 4 -ikz cosb
’ IE(z') Hy (k|z-z'|)dz' = e , |z| < b, (1.1)
and b
2 (1) ak -
(— + k) [ I,(z') H, (k|z—z'|)dz' = — sinb e
dz b - - -0
lz| < b. (1.2)

Cameron (1966) utilizes variational techniques to obtain an approximate
solution to the strip integral equation for the E-polarization and develops
integral equations for the even and odd parts of the solution. Methods for
handling the t % edge singularities in (1.1) in numerical solutions are
given by Shafai (1971), Dmitriev and Zakhorov (1967), and Bolomey (1974),
among others. Approximate solutions of the strip problem for narrow strips

subjected to a normally incident plane wave have been obtained by Sommerfeld

(1964, pp. 273-284) and Born and Wolf (1970, pp. 589-590). For the narrow
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strip and the case of normal incidence, the H-polarization current IH(Z)

has z-dependence of the form

2
IH(z) = cl(b - z)=, (1.3)
and the E-polarization current IE(z) has z-dependence of the form
-1
I(2) = c,(b° - 29)%, (1.4)

where 1 and c, are constants. This solution for IE(z) may be obtained by
approximating the Hankel function kernel in (l.1) by a logarithmic kernel.

The integral equation

f(x') fn|x-x'|dx' =1 (1.5)
-1

2,3
has the exact solution f(x) = - Sl:§*%——-.

Solution techniques for singular integral equations with logarithmic
and/or x_l kernels have been given by Latta (1956), Erdogan (1969), Kanwal
(1971), Muskhelishvili (1958), and Miiller (1967), among others. The solu-
tion of the integral equation

b
P(t') fn|t-t'|dt' = f(t) + constant (1.6)
a
for an elasticity problem is given by Muskhelishvili (1958, pp. 305-309).
Both sides of (1.6) are differentiated to obtain the solution. Kanwal

(1971, p. 210) shows that a solution of

1
B_(Z)_dy =0 1.7)
X-y

1
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is g(x) = C(1L - x7) 2, where C is any constant. This same solution is
also obtained when both sides of (1.5) are differentiated.

An important consideration in a finite problem is symmetry. The
solution can always be expressed as the sum of an even part and an odd

part. Consider the equation

b
1
£Go HyY (el x-y[)ax = (), b <y <b. (1.8)
“b
It may be shown that if g(y) is odd, i.e., g(y) = - g(-y), then f(x) is

also odd. If g(y) is even, i.e., g(y) = g(-y), then f(x) is even. The
derivative of an odd function is an even function and that of an even

function is an odd function. These important properties are very useful.

6.2 Pertinent Concepts in Schwartz Distribution Theory

Schwartz's theory of distributions provides a rigorous justification
for a number of manipulations that are otherwise unjustifiable, e.g., dif-
ferentiating the unit step function to obtain the delta function. Opera-
tions of this type are only a small part of the total theory. Schwartz
(1966a, pp. 38-44) utilized Hadamard's finite part in the development of
the theory of distributions to define certain integrals which otherwise
would not be defined. 1In recent years, several excellent textbooks on dis-
tribution theory have appeared, for example, Zemanian (1965), Schwartz
(1966b), Gel'fand and Shilov (1964), Arsac (1966), Jones (1966), and
Antosik, Mikusifiski, and Sikorski (1973), among others. The discussion
here will be directed toward the solution of the problem at hand and will
therefore be quite limited. The theory of distributions provides the

operations that are required to handle the strip problem.
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6.2.1 The Definition of a Distribution

There are two equivalent ways in which a distribution may be defined.
First, a distribution may be defined to be a continuous linear functional
f on a space f of testing functions ¢(x). This approach is used by
Schwartz (1966a), Zemanian (1965), and Gel'fand and Shilov (1964). Second,
a distribution may be defined as a limit of equivalent fundamental sequences
of continuous functions. The sequential approach to the development of the
theory of distributions is presented by Jones (1966) and Antosik, Mikusinski,
and Sikorski (1973). To each distribution in the functional approach, there
is one corresponding distribution in the sequential approach. The func-
tional approach to distribution theory is used here because it is the
approach that is most often used and therefore possesses a greater body of

literature.
Definition: A distribution is a continuous linear functional on the space 5.

For our purposes, the space of testing functions .f consists of all com-
plex-valued functions ¢(t) of a real variable t that possess derivatives
of all orders (i.e., are infinitely smooth) and vanish outside of some
finite interval. A functional f on 5 is a rule that assigns a complex num-
ber (f,p) to every member of 5. (f,p) is sometimes written as f(p). A
continuous linear functional f on .5 possesses

(1) linearity, that is, for any two testing functions 9 and Py in B

and any complex number o

(f,(p]+CP2> = (f’(P1> + (f’(P2>

(f,OL(pl> OL(f,(pl> . (2.1)
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(2) continuity, that is, for any sequence {@“(t)}v= in ./ such that

1

{¢v}v+w - ¢ in
then

lim [{£,9) - (£, )| ~ O. (2.2)

The space of all such distributions is denoted by .r .
When f(t) is locally integrable, a distribution f corresponding to

f(t) can be defined through the convergent integral

(e o]

(f,p)= £(t)p(t)dt. (2.3)

Distributions corresponding to locally integrable functions are called
regular distributions. Although distributions do not possess values at
points, regular distributions may be associated with ordinary functions
which do have point values. Zemanian (1965, pp. 6-9) shows that 'a regular
distribution determines the function producing it almost everywhere.'" He
concludes that "without ambiguity we may consider an equivalence class of
functions and its regular distribution as being the same entity." For this
reason, both the regular distribution and the function that generates it
will, at times, be referred to as ''the'" distribution.

All distributions that are not regular are called singular distribu-
tions. One example of a singular distribution is the delta functional

which assigns the wvalue

(8,p) = ¢(0) (2.4)

to every If the integral (2.3) is divergent, a singular distribution

may often be defined with the aid of Hadamard's finite part. In such
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cases, f is called a pseudofunction and is identified with the letters Pf.
A distribution corresponding to Pf[f] can be defined through the finite

part integral

<Pf[f],(p> = Fp f(t)cp(t)dt. (2.5)

At times, both a singular distribution and its corresponding pseudofunction
will be referred to as '"the" distribution. An example of a pseudofunction
is

Pf t ¢ l+(t). (2.6)

The distribution corresponding to this pseudofunction is assigned the value

3

(Pf t 2 l+(t), p(t)) = Fp| t 2 o(t)dt (2.7)

0
for every ¢ €.f. Instead of introducing the finite part concept as Schwartz

does, some authors, notably Gel'fand and Shilov, use a procedure called
regularization to treat the divergent integrals that occur. This regular-
ization is generally equivalent to taking the finite part.

The concept of a distribution can easily be extended to the n-dimen-
sional case by introducing testing functions ¢ of n real variables that
are infinitely smooth and that vanish outside of some bounded domain of

the n-dimensional Euclidean space En.

Definition: A distribution on # is a continuous linear functional on the

space .§ of testing functions on

A locally integrable function f(t) generates a distribution on # through

the multiple integral
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(f, @) = 1 f(t)p(t)dt, ¢ € B, (2.8)
T

R

where (t) = (tl,tz,---,tn).

6.2.2 The Differentiation of a Distribution

Every distribution has derivatives of all orders. This is based on
the fact that (f, dp/dt) is meaningful even if df/dt does not exist. It
is this observation that allows distribution theory to generalize the de-
rivative. 1In fact, every distribution may be expressed as a finite order
distributional derivative of an ordinary (locally integrable) function.

The first derivative df/dt of a distribution f is defined as the func-

tional on ./ given by

(df/dt, @ = - (£, dp/dt), ¢ € 5. (2.9)

This is a convenient definition because dw/dt itself is an infinitely dif-
ferentiable testing function of finite support belonging to .. First order
partial derivatives Bf/Bti, i=1,2,++*+,n, of any distribution f defined

over # are the functionals on S given by
(af/ati, @ = - (£, a@/ati), o € D (2.10)
As an example of the procedures involved in distributional differen-

tiation, consider the distributional derivative of g(t) = (b2—t2)—§1?b(t).

The ordinary derivative is

\
=2

0 |t]
= 7 lt]
lt(bz—tz)_E el

dt (2.11)

A
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The distributional derivative is found by applying (2.9).

b-¢
(dg/dt, @) = ~ (g, dp/dt) = ~ lim | (*-t) 7% 2 ar =
e~>0+
~(b-¢)
l b-e l
= lin || t®%=tH) T2 pdt - (2be) 72 [p(b) - o(-b)]
e~>0+ I—(b—e) l
- Fpt e -tH) 2 gdr  (pf e -tD) 2110 (), @ (2.12)
-b

The distributional derivative of g is the pseudofunction

-3
pe [e(b7-t0) 2] 17 (o). (2.13)
The sequential approach to the theory of distributions handles the
definition of the derivative of g differently. A delta sequence is a

sequence that converges to the delta function, i.e.,

§(x) = [8_(x)] (2.14)

where the square brackets [ ] denote the limiting process. If the sequence
gn(x) = 6n(x)-kg(x) [Gn(x) convolved with g(x)] converges to g(x), then

dg/dx is defined by the limiting sequence

dgn(X)
dx = | Tax (2.15)

A graph of dg_/dx for fixed n gives an approximation of the distribution.
n g
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6.2.3 The Convolution of Distributions

For ordinary functions f(x) and g(x) defined for -= < x < =, the

expression

(fxg)(x) = | £(£) g(x-£)dE (2.16)

is called the convolution of f and g. The integral does not always exist.
If one of the functions f or g has compact support and therefore vanishes
outside of some finite interval, then f % g exists for almost all values of
X.

In the development of the convolution of two distributions, the con-
cept of the direct product of the distributions must be introduced. If
p(t, 1) is a two-dimensional testing function in 5. and if f(t) and g(t)
belong to the distribution spaces »: and .8', respectively, then the direct

product f(t)® g(t) is a distribution in j% defined by

b

(f(r)®g(t), o(t, T)) =(f(t), (g(1), o(t, 1))). (2.17)

The direct product is commutative and associative for all distributions of
interest here.
The rule that defines the convolution h(t) = f* g of two distributions

f and g is given by

(fxg, @ = (£(t)®@eg(1), p(t+tr))

(f(t), (g(t), (t+1))). (2.18)

A meaning can be assigned to the right-hand side if either f or g has

bounded support. If g is taken to be the distribution with bounded support,
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this requirement insures that (g(t), ¢@(t+1)) is itself a testing function
in 5.

Since the current on a finite body is of finite support, the convolu-
tion of the current with another function is usually defined. The convolu-
tion of distributions can be defined under other conditions, but these are
beyond the scope of the present discussion. Since the direct product is
commutative, it follows that the convolution of two distributions is com-

mutative, that is,

(f*xg, o) =(g*£f, o), p € 5. (2.19)

Convolution is not in general associative, but it is associative if the
supports of all of the distributions, except for at most one of them, are

bounded. That is,

(fx*(gxh ), o) =(( fxg)*xh, ¢, ¢ €L (2.20)

if the supports of at least two of the distributions f, g, and h are
bounded.
The delta functional and its derivatives are very important in con-

volution. They exhibit the properties

<6*f, cp) <f, cp),

(8" % £, @) =(f', ¢)> (2.21)

and
n n
™t o =™, 0, € s
The first derivative of the distribution f is the same as the convolution
of f with the first derivative of §. The derivative of the convolution

obeys the property that
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D( fxg ) = (Df) xg = £ *x (Dg) (2.22)

where D d/dx. This is easily proved by using associativity and the fact

that Dh = &' % h, that is,

D(fxg ) =8"x(fxg)=(8"%xf)xg=£Ffx(8"xg ). (2.23)

This is true as long as either f or g is of finite support.

Properties of various distributions and their convolution with other
distributions are given by De Jager (1970), Bremermann et al. (1967),
De Jager (1969), Beltrami and Wohlers (1966), and Shilov (1968), among

others.

6.2.4 Convolution Equations

Many of the differential, integral and integro-differential equations
useful in solving electromagnetics problems may be written in the convolu-
tion form

h*y = f. (2.24)

Here, h and f are given distributions and y is an unknown distribution.

The equation is a differential equation when h is a linear combination of
the derivatives of the delta functional. It is an integral equation when
h has finite or infinite, but not vanishing, support. It may have a unique
solution or no solution, or even an infinite number of solutions. The

solution of (2.24) must satisfy

(h*y, @) =<(£f, @ (2.25)

for everygpt.. For the strip problem integral equation, the support of

the solution y is known. This restricts the possible classes of solutions
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to those having the proper support.
An important concept in solving distributional differential equations

is that of the fundamental solution. Consider the equation

Ly = f (2.26)

where £ is any linear differential operator with constant coefficients,

that is, £ is of the form

n
°t:a‘.n“+ ...+ao. (2.27)
dz
Equation (2.26) may also be written as
\
(£6) xy = f. (2.28)

A fundamental solution for this equation, denoted by E(ZIE) with pole at

¢t satisfies the equation
SE = 8(z-z). (2.29)

Boundary conditions per se are not required. A distribution E is a solu-

tion of this equation if and only if
(LE, @) = (E, £*p) = (L) (2.30)

for everyp€5. £* is the adjoint of f. Any two fundamental solutions for
£ differ by a solution of the homogeneous equation £v = 0. When a funda-
mental solution E is known, a solution of (2.26) can be written as the

convolution

y = f%E. (2.31)

The convolution equation for the current source-function is obtained in

the next section.
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6.3 Maxwell's Equations and the Convolution Equation for the Current

Source~Function

The fundamental relationship between the scattered electric field

E° and the induced current J is, from (1.10) of Chapter 3,

2

v2ES + K2

11

- —1U. (3.1)

g = - L gv.3 + 2 3]

Y B - v
Here, Es is the electric field, J is the current, and U is the vector cur-
rent source-function. A treatment of Maxwell's equations in a space of
distributions is given by Schmidt (1968).

Let ¢(x,y,z) be a three-dimensional testing function with

Then the equation
@ + 10 = - 8 (3.2)

must satisfy

e, (7* + 1Dy = - ¢(0,0,0) (3.3)

for all ¢€.p. Here, ¢ is a fundamental solution for the operator
7% + k%) and is

ikR
e

¢ = 4R

(3.4)

where R2 = x2 + y2 + z2. This result is given, for example, by Stakgold
(1967, Volume II, pp. 53-55). Since U has finite support, the solution
for E° may be written

-5 (Ux0) = [(V2 + KDEST%0 = ES% (v2 + k%)0 = - E5% 6 = - E°(x,y,2)

or

(E°(x,5,2), @) = ((Ux2 ), o) (3.5)

|
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For E- polarization in the strip problem, the current takes the form

Jgp = Ig(2)1_ (2) 8(x) ¥y

and the current source-function becomes

(Uer @) = (VU-J_ + K20, @) = K2 (Jns o)

For the H-polarization, the current may be written as

JH = IH(z)l_b(z) §(x) z = v z.

The current source-function becomes

(UH, Q) = (VV-JH + k_JH, O

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

3780 . . 2 .
= x (24K ) 42 )
0z
Now

2 2

] 2 b 3 2

(C=5 +t k) 4 @) =(Ig(2)1 0 (2), (—5 +k ) ¢(0,y,2)) =
0z 9z
- dI1
3 L2 _H do -
l IH(z)( 2 + k )cpdz iz s dz + k IH(sz =
0z
-b -b
- 2
= Fp’ ( ~ + k )IH(z)cpdz
dz
-b
Therefore,
-2 2 b 2
(S + k) g, = 60 17, (2) ( Pf = + k) T,(2) = 8(x) u(2)

d9z"~ dz
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where the subscript H has been left off Uy for convenience. This defines

what will also be called the current source-function for the H-polarized

2

case. The use of the notation Pf Q—E-IH means that dZIH/dz2 is to be
dz

taken as a distribution, per se.
Using the property that §(x) * £(x) = £f(x) and substituting (3.7) in

(3.5) gives

B (x,2) = - 2 {1 (@1°, ()3 # B D kP2 1)

— | 1) BD @iz 12azt. (3.12)
-b \
For the H-polarization, after using the same property and substituting

(3.11) in (3.5), the tangential (z component) scattered field becomes

ES(x,2) = - Z%’ u(z") Hél)(k[x2+(z—z')2]2)dz'. (3.13)
b

The total tangential fields, for the E- and H-polarization, respectively,

are

E;(x,z) = E5(x,2) + E;(x,z), (3.14a)
and

EC(x,2) = E(x,2) + E-(x,2) (3.14b)

z z z

where

gt - e-lk(z cosb + x sinb) (3.15a)
and

E: = sind e—lk(z cosd + x 31n6). (3.15b)

By the boundary condition, the total tangential electric field on the con-

ducting strip must vanish. Introducing the notation
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ra(x) X € s 0 X € s
a (x) = { and ag(x) = { (3.16)
0 x & s a(x) x ¢ s

where s denotes the collection of points not in s = [-b, b], the total

electric field along x = 0 may be expressed as

EY(0,2) = 0 + £, (2) (3.17)
where s = [-b, b] and f is an unknown function equal to the total field
along x = 0 and in 8. The convolution equations for the E- and H-

polarizations, respectively, become

and

-ikz cosb _

uS,H(z)*:Hél)(klzl) = — ( sinb e fé,H(z) ). (3.19)

The exact solution of the E-polarization equation for IE(z) may be
expressed in terms of a series of Mathieu functions. Various approximate
methods of solution have been discussed in the literature. The equation
for u(z), however, contains a pseudofunction and therefore can not be
solved directly by expanding the unknown in a set of basis functions. The

left side of this equation can also be written as
[C 8" + k78 ) x (110 )] 13 (k2. (3.20)

This follows from (2.21) and (3.9). The next section details an unsuccess-

ful attempt to solve (3.19) for u(z).
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6.4 An Attempt to Solve for u(z)

Consider the convolution equation

y x i acfz)) =1+ (4.1)

8

where y and f are unknown distributions with support s = [-b,b] and
respectively. Assuming that lS + fg corresponds to a once-differentiable

function, then
4 1 +f£) =0 + ¢! (4.2)
dz s 8 s .
where the prime represents a new function (or distribution) which corre-
sponds to the derivative of f.. Since

dy
s *H(()l)(k]z|), (4.3)

& Uarig Glzht =

any constant times the pseudofunction ng' may be added to the unknown in
the convolution equation without affecting the right-hand side in the
interval [-b,b]. This is seen to be equivalent to the case when the homo-
geneous finite part integral equation is solved by differentiating a
locally integrable solution of the ordinary integral equation. The follow-

ing discussion is based on this equivalence.

The integral equation for u(z) may be written as

b
—1KZ CUSU

Fp| u(z"') Hd*’(k|z—z'|)dz' = %5>sin6 e , z€s = [-b,b]. (4.4)
0
-b

A solution for u(z) of this finite part integral equation satisfies the

distributional convolution equation of Equation (3.19) which is
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-ikz cosb

(1)

(us(z)* H0 (k|z|), Q) = (%%[sine e - fg.H(z)]’ P> (4.5)

for all ¢€.p. Here, the emphasis is placed on trying to solve the finite
part integral equation (4.4) and hence obtain a solution of (4.5).

It would seem reasonable to follow the same approach to solving (4.4)
which proved successful in the case of the half-plane problem. Thus a

solution of the form
u(z) = sind v(z) + A we(z) + B wo(z) (4.6)

is desired where v(z) is the solution of the ordinary integral equation

b

v(z") Hél)(klz—z'l)dz' - ﬂ{_ -ikz cos6

7 e ’ z € S, (4'7)

-b
and LA and w, are, respectively, even and odd (probably) pseudofunction
solutions of the homogeneous finite part integral equation

b
Fp| w(z'") Hol)(k|z—z'|)dz' =0, z € s, (4.8)
-b

3
subject to the edge condition w(z) = 0( z 2 ) as z ~ *b. An odd solution

wo(z) is easily found, but thus far, an even solution we(z) with the pro-
per edge behavior has not been determined.
To determine a solution of (4.8), consider the integral equation

b
y(z') HY (k|z-2')dz' = ¢ 2% £ (2), -w<z<o, (4.9)
-b
where a = cosf® and fg(z) is defined by (3.17). Rewriting the e

factor on the right-hand side as [cos(kaz) - i sin(kaz)] and using the



152

symmetry properties that are discussed in the last paragraph of Section
6.1, one finds that the solution y(z') of (4.9) can be written as the sum
of an even part y_(z') and an odd part yo(z'). The integral equations for

y (z') and y_(z') are, respectively,

b
l y_ (z") Hol)(k|z—z'|)dz' = cos(kaz), z € s, (4.10a)
-b
and
b
' y_(z'") Hg*’(k|z—z'|)dz' = gin(kaz), z € s. (4.10b)

Applying the operator L = ( 5— + ika) to (4.9) yields

b
Fp '{Ly(z')} Hol)(k|z—z'|)dz' =0 - Lf,, - ® < z <o, (4.11)
-b

A solution to the homogeneous finite part integral equation becomes

w(z) = Ly = ( 5— + ika) (ye - i yo) =

az Ve + ka Yo + i( ka Yo T 4z yo). (4.12)

At first, it may appear as if w has an even and an odd part. It may be
shown, however, that the even part is identically zero. To do this consider
the case when a = 0 in (4.10a) and (4.9) (the normal incidence case). The
right-hand sides of both equations are unity. Since the edge behavior of
y(z) for this special case is z %, it follows that y_(z) has the same edge

behavior for a € [-1,1]. Differentiating (4.10b) with respect to z, using

(4.12) of Chapter 2, integrating by parts, and assuming that y_(*b) = O,
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one obtains

Hol)(k|z—z'|)dz' = ka cos(kaz), z € s. (4.13)

bdy
’ dz'

-b

Comparing this with (4.10a) and assuming that the homogeneous equation has
only the trivial solution requires that

dyO
ka ye - dT = 0. (4.14)

This is almost certainly true. More research needs to be carried out to

=

prove that it is definitely true. Since Yo wWas assumed to have z edge

1

behavior, the edge behavior of y_ appears'to be z®. This seems to verify

the validity of the assumption that yo(ib) = 0. Substituting (4.14) in
(4.12) yields
-4
w(z) = wo(z) =1z Ve + ka Yoo (4.15)

_3
This is an odd function which apparently has edge behavior z 2. The z

variation of wo(z) must be the same for all a € [-1,1]1 in order for the
present method to yield a unique solution. Since this is true for the
half-plane problem, it seems reasonable that it also would be true for the
strip, even though a proof of this has not been found. By differentiating
this odd solution, an even solution is obtained. This even solution has
2_5/2 edge behavior and so is not allowed.

Although a non-zero even solution of the homogeneous finite part inte-
gral equation with the proper edge behavior has not been determined, one

will optimistically be assumed to exist to facilitate the present discus-

sion. If one does not exist, then the problem does not have a solution.
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That an even solution is required may be seen by considering the special
case of normal incidence. For a narrow strip, the current distribution

may be approximated as

2.5.b

I =c, (b2-2%)%1 (). (4.16)

H

The current source-function u(z) = (d2/dz2 + k2)IH is seen to be an even
function with z_'g edge behavior. Clearly, an even function with z g edge
behavior is required to reconstruct the proper current source-function.
Assuming the existence of an even solution with suitable edge behavior,
the current source-function may be written in the form expressed by (4.6).
This formula contains two coefficients which remain to be determined. The

procedure for evaluating these constants depends upon a consistency condi-

tion which is presented in the next section.

6.5 The Consistency Condition

Consider the homogeneous, inhomogeneous, and adjoint homogeneous sys-

tems for -b < z < b:

The homogeneous system

£0 =0 p(-b) =p(b) =0 (5.1a)
The inhomogeneous system
&n = £ n(-b) = n() =0 (5.1b)

and

The adjoint homogeneous system

=0 (5.1c)
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where § = £% = (dz/dz2 + k2). When £n is a pseudofunction in the neigh-
borhood of the edges, boundary conditions on the adjoint homogeneous system
are not required. Consistency conditions, however, must be satisfied for
the existence of a unique solution. Multiplying (5.1b) by ¥ and (5.1lc)

by n, subtracting, and integrating, one obtains

{pgn - ne*pldz = | £(2) V(z)dz (5.2)
-b -b

for every ) which is a solution of (5.1c). The integral on the left is

zero. This may be seen by performing integration by parts on the first

term on the left. The integral on the léft becomes

b

s.dn . (5.3)

-b .

If dn/dz is finite at the end points, then the adjoint problem has the

boundary conditions

¥(-b) = $(b) = 0. (5.4)

1f, on the other hand, dn/dz approaches infinity at the end points, then
no boundary conditions on | are required because the divergent terms may
be made part of a finite part integral. Using the fact that

b-¢

b-¢
Fp| ¥fndz = lim yendz - w%g (5.5)
-b >0 —(b-g) -(b-€)
the left-hand side of (5.2) becomes
b
dap
T (5.6)

-b
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The boundary condition in (5.1b) makes this zero. Thus, in order for

(5.1b) to have a solution, the consistency conditions

b
l f(z)d)l(z)dz =0 (5.7a)
-b

and
b
l f(z)q»z(z)dz =0 (5.7b)
-b

. e ikz -ikz .
must be satisfied where Yy = e and by = e or wl = sin(kz) and

= cos(kz). These are necessary conditions.

The solution to (5.1b) depends on whether (5.la) has a non-zero solu-
tion. When it does, the system is resonant and an arbitrary multiple of
the resonant solution of (5.1a) can be added to the solution for n. The
following theorem, similar to one given by Stakgold (1967, Volume I, p. 85),

is useful.

Theorem: System (5.1b) has no solution unless the consistency conditions

(5.7) are satisfied for every function ¢ which is a solution of (5.1lc).

This theorem is true only if the derivative of n, the unknown, approaches
infinity as the edge is approached. This eliminates the adjoint boundary
conditions. If the adjoint boundary conditions are required, the consis-
tency condition is usually satisfied automatically since the adjoint homo-
geneous system (5.1c) would usually have only the trivial solution. Assum-

ing that the current source-function u may be expressed by (4.6),

u(z) = sind v(z) + A w_(z) + B w_(z), (5.8)
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the constants A and B may be found by using the consistency conditions

= cos(kz) and Vo =W = sin(kz). "e" and "o" subscripts de-

with wl = U
note even and odd functions, respectively. Since the integral of an odd

function is zero, the expressions for A and B become

b

-sin@‘ v(z) cos(kz)dz

A= (5.9)

l we(z) cos(kz)dz
-b

and

—Sinel v(z) sin(kz)dz

B = (5.10)

l v sin(kz)dz
-b

6.6 The Solution for the Current

6.6.1 Off Resonance

If an appropriate even solution we(z) of the homogeneous finite part
integral equation can be found, then the current source-function u(z) is
given by (4.6) and the current is related to the current source-function

by the convolution equation
(8" +k8§ )xI.=u(z). (6.1)

This equation can be solved using a fundamental solution of the operator

(dz/dz2 + kz). A fundamental solution satisfies the equation
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(8" + k™8 )*E = §(z-1) (6.2)

as was discussed in Section 6.2.4. One such fundamental solution is

ikl z|
2ik

E(z) = (6.3)

This is given by Stakgold (1967, Volume II, p. 55). The solution for the
current IH(Z) is

IH(z) = u(z) % E(z). (6.4)
Substituting this in (6.1) gives

u(z) * ( 8" + k78 )% E(z) =\u(z) * 6§(z) = u(z). (6.5)

This shows that (6.4) is indeed a solution for the current.
The consistency conditions may be used to show that IH(z) as given by
(6.4) is zero for z ¢ (-b,b). Assuming that (6.4) may also be interpreted

as a finite part integral,

b
- \ ik|z-z', ,
IH(z) 7ik u(z') e dz
-b
—. '
ikz u(z') elkz dz' =0 z < -b
-b
ik . (6.6)
. il !
ikz u(z') e ikz dz' =0 =z > b.
-b

Thus, as long as the consistency conditions hold, IH(z) is given by (6.4)
for all values of the argument z. For a Green's function with boundary

conditions g(xb, z') = 0,
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.. _ sin[k(z'*b)] sin[k(z+b)] > ..
g(z,27) = k sin(2kb) , zZ <z,
it may be shown that
b b
u(z') g(z,z')dz' - u(z') E(z-z')dz" (6.8)
-b ~b

as long as the consistency conditions are satisfied. This proves that the
expression for the current derived by conventional Green's function tech-
niques is the same as that given by (6.4) provided that the consistency

conditions are satisfied.

6.6.2 The Case of Resonance

When the frequency of the incident plane wave is such that
k =45, n=l’2’...’ (6-9)

Equation (5.1a) has a nontrivial solution. For even n, the solution is
sin(kz) and for odd n, it is cos(kz). At resonance, (6.2) has no solution
because the consistency condition Jbé(z—c)p(C)dC = (0 is not satisfied.
Here, p(z) is the resonant nontriv£:1 solution to (5.1a).

At resonance, a modified Green's function must be used. Discussions
of the modified Green's function are given by Stakgold (1967, Volume I,

p. 89) and Lanczos (1961, pp. 270-275). The modified Green's function

satisfies
£*gy(z[t) = 6(2-5) + C p(2) () (6.10)

where p(z) is a solution to (5.1la). The consistency condition
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l [6(z-z) + C p(2)p(g)]p(L)dz = O

is applied to find the constant C,

all n. (6.11

C = [(bp'(c)dc} b?

L
This insures that a solution for By exists,
Boundary conditions on gy are not required if pseudofunctions which
are singular at the ends are present in the current source-function. A
suitable modified Green's function appears to be
-cos sin even

(kz) (kz), n = (6.12)

sin cos odd.

This may be verified directly by applying £*. Any constant times p(z) can
be added to this Green's function to obtain another one.

The solution for the current corresponding to (6.6) becomes

b
1,(2) | u) gy(z[e)dz + € o(2) (6.13)

-b
where p(z) is the nontrivial solution to (5.l1la) and C is any constant.
This result tends to suggest that, at resonance, a current can exist even
though u(z) is negligibly small or zero. The reader is referred to Stak-

gold or Lanczos for further comments.

6.7 Conclusion
So far, the results of this chapter are inconclusive. If an even

function with the proper edge behavior can be found which satisfies (4.8),
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or if additional techniques can be developed to find the distributional
solutions of (4.5), then the current source-function technique may be
used to find an exact solution to the strip problem. More research in
this area needs to be performed.

Although time did not permit it here, the strip problem could be
solved numerically and the results compared to the exact results to verify
that the current source-function technique is useful in obtaining approxi-
mate solutions for finite problems. It would also be interesting to take
the exact solution for the current IH’ to find u = dZIH/dz2 + kZIH and to
compare this with I_. in order to determine the functions which must be

added to I. to obtain u.
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7. THE THREE-DIMENSIONAL TIME-DEPENDENT CURRENT SOURCE-FUNCTION

The extension of the current source-function technique to the three-
dimensional time-dependent case is straightforward. The steps in the
development are briefly outlined here.

The previous chapters dealt with extreme cases of scatterers with
sharp edges. The currents on smooth scattering objects without edges do
not have singular behavior and therefore may be twice differentiable.
Objects with sufficiently well-behaved currents would be expected to have
a well-behaved current source-function. If this is the case, then the
current source-function will be locally integrable, the concept of the
finite part will not have to be introduced, and consistency conditions

usually will be satisfied automatically.

7.1 Maxwell's Equations and the Current Source-Function

Maxwell's equations are

oB
VXE = = — - K (1.1a)
oD
VxH = — + J (1.1b)
VD = p (1.2a)
V-B =m (1.2b)

where E and H are the electric and magnetic field intensities, J and K are
densities of electric and magnetic currents, and p and m are the electric

and magnetic charge densities. The charge and current are related by the
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continuity equations

om
V+K ot (1.3a)
_ 9
Vel = e (1.3b)

By combining Maxwell's equations, the currents and fields can be related

directly. These expressions are

(V" -, — ) - WeJ - — ——5 J| +— VxK (1.4a)
c2 Btz ot € c2 ot
and
V2 o) — = — |WeRk-="2K (1.4b)
2 aem et W ¢ ot ot

If, for example, K = 0, then the E field is related to the current by

oE -
e — LA N p— U (1.5)
2 2 € - 2 2
c 9t ot c ot
where U, the current source-function, is given by
U=VVe] - — —= J. (1.6)

¢~ ot

7.2 The Expression for the Current in Terms of the Current Source-Function

If the current source-function U is known, then the current is given by

L3 5o (uxux + A ) [Uxo] (2.1a)
2 2 2 2
c ot ¢ 9dt
[(UxVx + — = )U] % (2.1b)
¢ ot
1 9
U* | (Vxyx + — — )¢ (2.1c)

c“ 9t -



164

where ¢ is a solution of the equation

2
@ -2 e = 5(r,b) (2.2)
c ot
and [ 1 represents a dyadic operator. For harmonic time dependence,
e 777, (2.1) becomes
2 2
k™J = (-VxVx + k")[U* ] (2.3a)
2
= [(-VxVx + k)U] * (2.3b)
2
= Uk [(-VxVx + k“)?] (2.3c)

where ¢ is a solution of the equation
2 2
(V- + k7)o = 6. (2.4)

Equations (2.la) and (2.3a) follow from (1.5) by using

VeJ = - e7— (V*E) (2.5)
and

oFE

— = - [Uxe]. (2.6)

Equations (2.1b) and (2.3b) may be verified by substituting U from (1.6)

and using

2 2 9 .2
([ - =% 7= ) Flxoe. @) =(Fx [(V - 55 )],
c 9t c 9at
= (F*3§, CP) = (F, CP) (2.7)

where ¢(r,t) is a testing function in p and F is a distribution of finite

support in the spatial variables and of semi-infinite support along the
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positive time axis. Equations (2.1c) and (2.3c) follow either from the
associativity of convolution in distribution theory or from the theory of
systems of partial differential equations in distribution theory. The
2
1

dyadic inverse of the (VVe - —3-9—3-) operator in (1.6) may be found by

¢’ at
utilizing the concepts presented by Latta (1974, pp. 621-623). Tai (1971)

discusses similar dyadic Green's functions.

7.3 Conclusions

It appears that the direct relation (1.5) between the current and the
electric field can be used to solve for the current on a scatterer without
introducing the vector potential, at least for those obstacles with suf-
ficiently well-behaved current distributions. The current source-function
technique shows promise for treating the time-domain scattering from smooth
objects. Vector and scalar potentials would not be required. More re-

search needs to be carried out to verify the usefulness of this technique.
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8. CONCLUSION AND SUGGESTIONS FOR FURTHER DEVELOPMENT

The current source-function (CSF) technique has been applied to the
problems of scattering of electromagnetic waves from simple planar obstacles.
Techniques were developed for treating the singular behavior of the current
and its source-function when the scatterers have sharp edges. In the case
of the half-plane, an exact solution was obtained using the CSF technique.
The currents induced on the half-plane were also obtained by using the
moment method to solve the CSF integral equation numerically. An attempt
to solve the strip problem exactly using the CSF technique remains incom-
plete for lack of an even solution of the homogeneous finite part integral
equation with proper edge behavior. However, the numerical solution of
the strip problem using the CSF technique remains to be investigated.

The CSF technique shows promise for solving integral equations with a
logarithmic singularity both on the right-hand side and in the kernel. An
antenna with a 6 gap excitation (i.e., magnetic current K = §(z) S§(r-a) &)
produces an electric field with a logarithmic singularity. The CSF tech-
nique also shows promise for handling arrays of scattering or radiating
objects. The interactions between elements would be accounted for in the
current source-function which would simplify the moment method solution.
Once the current source-function was known, the current on an element could
be found from the current source-function associated with that element
alone.

The general nature of the CSF technique has been indicated in a brief
outline of how a current source-function might be defined for three-

dimensional time-domain problems (Chapter 7). Thus, there are many
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possibilities for application of the CSF technique which remain to be
explored. Only after further development will it be possible to make a
meaningful comparison between the moment method solutions of the CSF inte-
gral equation and the electric field integral equations of Pocklington and
Hallén. However, one advantage of the two-step CSF approach is that even
though the current source~function may be approximated by a discontinuous
function, the current, being calculated by integration, is continuous.

Other possible advantages, mentioned previously, such as efficiency due to a

simpler kernel and fewer basis functions, need to be investigated further.
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A. ANALYSIS OF ACCURACY

If a is a numerical approximation to the value of some function whose

true ("standard") numerical value is s, then,

Absolute error ‘s - a‘ (A.1)

and
s - a

Relative error (A.2)

Relative error is often used when the approximate value a is obtained
through floating point arithmetic. The exponent scaling present in float-
ing point arithmetic makes relative error the most natural criteriom to
use for describing the accuracy of such a 'numerical procedure. The rela-
tive error must not be used when the standard is equal to zero or in the
neighborhood of zero. This limits the usefulness of relative error.

By their very nature, some numerical approximations are naturally
absolute decimal approximations and absolute error criteria must be used.
Power series, for example, are sometimes of this type. If relative error
is used instead of the absolute error for such approximations, enormous
errors are obtained in the vicinity of a null or near-zero. For example,

if a numerical approximation generates

a = 0.0003927

when the true value of the function at that point is

s = 0.000000721

then

Absolute error 0.000391979

and

Relative error 543.66.
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This number for relative error is not particularly meaningful and may be
misunderstood if the values of a and s are not given. The absolute error

may also be misinterpreted unless the maximum value of the approximated

function is given.

The proper choice of using either the relative error or the absolute
error must often be made by computing both and choosing the most meaning-
ful one. The "typical" or median relative error is used sometimes to
describe the relative accuracy of a numerical approximation to some func-
tion. This provides a measure of error which is easily understood, but
eliminates from consideration large relative errors occurring around nulls
and near-zeroes.

Hart et al. (1968, p. 162) define

Precision index = - (A.3)

2OglOEmax
where Soil is the maximum relative or absolute error. For many of the
numerical approximations studied in this work, pointwise, average or median
relative error is preferred to maximum relative error. For this reason,

the definition |

8 8
S

(A.4)

Digits of Accuracy = - Qoglo

is made where s and a are numbers corresponding to a standard approxima-
tion and to an approximation under study, respectively. The "digits of

accuracy"

factor defined above is applicable only at a point and is re-
lated to the pointwise percent error through the !Log10 funetion. : Tts

name is derived from the fact that it tends to represent the actual number

of digits for which the approximate value matches the standard value. For
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example, 2.42 is accurate to 1.3 digits when the standard is 2.54 and
0.0044721 is accurate to 3.9 digits when the standard is 0.0044716. The
estimated median digits of accuracy is sometimes used to indicate general
trends that an approximation to some function exhibits over some finite
range of arguments. The median is used instead of the maximum because of
the losses of digits of accuracy occurring at nulls or near-zeroes. If
it is desired to compare two numbers, neither of which is known to be cor-
rect, then the "number of matching digits" is given. This is obtained by
assuming that one or the other of the numbers is most correct and using
it as the standard for the '"digits of accuracy". In some cases, an aver-—
age of the "digits of accuracy" is used.

For some comparisons, a measure of the number of decimal places of
accuracy (or of the absolute error) is useful or necessary. For this

reason, it is helpful to define

Decimal Offset Factor = - 20g1rls|. (A.5)

If the decimal offset factor is given, an estimate of the magnitude of the
standard is obtained from

|S|__10—Dec1mal Offset Factor (A.6)

A measure of the number of decimal places of accuracy is obtained from the

equation

Decimal Places of Accuracy = - Rog, |s - a|

- (2°glols_'s_il+ Logypls])

Digits of Accuracy + Decimal Offset Factor (A.7)
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For a standard of 2.54, the decimal offset factor is -0.4 and for a stan-
dard of 0.0044716 the decimal offset factor is +2.3. From the above equa-
tion, 2.42 is accurate to 0.9 decimal places with a standard of 2.54 and
0.0044721 is accurate to 6.3 decimal places with a standard of 0.0044716.

A measure of decimal places of accuracy which seems to agree with
visual expectations better than (A.7) is

Apparent Decimal Places of Accuracy =
= Digits of Accuracy + Decimal Offset Factor - 0.5. (A.8)
This is not used in this thesis. Where large groups of data are involved,
an estimated median decimal offset factor is given. In most cases, the
decimal places of accuracy figure is given per se.

The concept of digits of accuracy, decimal offset factor, and decimal
places of accuracy are quite useful when comparisons between two or more
approximations to some function are being made. In general, it is suffi-
cient to simply compare the digits of accuracy figures. 1In certain cases
where the values of the standards are not close to each other, it is
necessary to keep the respective decimal offset factors in mind in order
to obtain a meaningful absolute comparison. Either (A.7) or (A.8) may be

used for this.
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B. APPROXIMATIONS TO THE MATRIX ELEMENTS

The matrix elements for the moment method solution of integral equa-

tions with a Hankel function H 1)

0 kernel are integrals of the Hankel

function weighted with the expansion functions. Numerical approximations
for these matrix elements have often been made without stating the
absolute or relative accuracy of these approximations. Excellent approxi-
mations, accurate to at least ten decimal places, for the matrix elements
are given in the text and will be used as the standards to which the
approximations given here are compared. The accuracies of the approxima-
tions derived here are given in terms of '"digits of accuracy" and "decimal
offset factor." These terms are defined and explained in Appendix A.
Further references and another discussion of matrix element approximation
for the Hankel function kernel are given by Harrington (1968, pp. 43-44,
47-49).

The crudest approximations for the self terms are derived from the
formula

JO(t) =1 (B.1)

for small t. Better approximations are derived from the formula

Jo(t) = cos(t/V2) (B.2)
for small t. Using the fact that
Hél)(t) = Jo(t) + i(2/w) [y+an(x/2)1] Jo(t) + i(4/n)J2(t) + iO(ta). (B.3)

and substituting (B.1l) and (B.2) in (B.3), one obtains

Hél)(t) ~ 1 4+ i(2/m) [y+Hn(t/2)] (B.4)
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and

Hél)(t) - cos(t//Z) + 1i2/m) [y + n(t/2)] cos(t/V2). (B.5)

after neglecting higher order terms. Self term approximations given here
are based on (B.4) and (B.5).
Matrix element approximations involving the Hankel function with a

difference argument are derived from the expansion

1 v .G
H(() ) (d-t) =k=z-mﬂé )(D)Jk(t) Ip| > |t] (B.6)

as is given by Olver (1964, p. 363). Use of this infinite series allows
the D and t dependence to be separated. Mutual term approximations given

here are based on (B.1), (B.2), and (B.6).

B.1 The Self Terms for a Pulse Basis Function

Self term matrix elements for pulse expansion functions are propor-

tional to
H H H
Hél)(t)dt = | 3y(0at + 1| v (Dae (B.7)

where Jo(t) and Yo(t) are the Bessel functions of the first and second
kinds. Two numerical approximations to this integral will be compared
using the approximation given by (2.4) and (2.5) of Chapter 4 as the stan-
dard. Substituting (B.4) and (B.5) in (B.7) yields the approximations

H

#E ()dt - B+ 1(2/m) [y + aa(8/2) ~ 178 (8.8)
0

and
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H
Hél)(t)dt = V2 sin(H/V2) + 1(2/n)[y + a(H/2)] V2 sin(H/V2)

- i(2/w)H [sin (B.9)

Table B.l summarizes the accuracy of these approximations. (B.8) is good
to three digits for H less than 0.1l. The usefulness of (B.9) is limited
by its imaginary part which is good to three digits for H less than 0.2.
In conclusion, it appears that (B.9) gives roughly the same accuracy at

2H as (B.8) does at H.

B.2 The Mutual Terms for a Pulse Basis Function

Mutual term matrix elements for pulse expansion functions are written

as H

1St 0-tyae (B.10)
-H
where 2H is the subsection width and D = 2nH for n = 1,2,++-. Several

approximations to (B.10) are studied. Substituting (B.6) in (B.10), one

obtains
H H
1) _ (1)
Hy ' (D-t)dt = 2 ) Jy (B)dt (B.11)
-H
where
k=20
g, = (B.12)
k k>0

Retaining the first two terms gives the approximation
H H H
B 0-t)ae = 2 5P )| y0ae + 4 1P )| 5,0ae. (8.13)
-H
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The integral of Jz(t) may pe approximated by remembering that
3,(t) - 5 £ cos(t/V/6) (B.14)

for small t. Integrating by parts and dropping higher order terms, one

obtains
H

J,(t) dt = (H”/24) cos (H/V6) (B.15)
0

for small H. Using this in (B.13) yields the first approximation
H H
B 0-0de = 2850 @) 3y (0ae + 1P 0) & cos/ve).  (8.16)
-H 0

All of the functions given on the right-hand side of the equal sign are

evaluated to double precision accuracy using the appropriate subprograms.

The second approximation is obtained from (B.2) and (B.16) and is
i 3
Hél)(D—t)dt = 2/2 Hél)(D) sin(H/V2) + Hél)(D) %;-cos(H//6). (B.17)
-H

The third and fourth approximations are obtained by dropping the Hél)(D)

terms in (B.16) and (B.17). These are

H
Hol)(D—t)dt = (2H)Hél)(D) (B.18)

-H

and H
Hy") (D-t)dt = 2/2 sin(H/V2) HY™ (D) (B.19)

-H

The four approximations are compared in Table B.2 by using (2.6) of Chapter

4 as the standard. Careful study of this table reveals that the imaginary
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parts for adjacent elements are the least accurate. The expressions (B.16)
and (B.17) are accurate to almost three digits while (B.18) and (B.19) are
accurate to almost two digits. For accuracy to three digits, (B.1l6) or
(B.17) should be used, if only for adjacent elements.

A final approximation is derived for the evaluation of adjacent ele-

ments. This is obtained by writing
H D+H D-H
Hél)(D-t)dt = Hél)(t)dt - Hél)(t)dt (B.20)
-H 0 0
and using either (B.8) or (B.9) to evaluate the integrals on the right.
Table B.3 gives the accuracy of such a scheme for small H and D. These
numbers show that (B.20) is slightly better for small D and small H than

are (B.16) through (B.19), but that the error increases very rapidly as D

or H is increased.

B.3 The Self Terms for an Inverse Square Root Basis Function

The self term due to an inverse square root expansion function is

H
e 2D (r)ae. (B.21)
0
Substituting (B.4) and (B.5) in (B.21), one obtains
H
f t 2Hél)(t)dt = 2/H (1 + i(2/m) [y + n(@/2) - 21) (B.22)

and H
_1
' t 2Hél)(t)dt

2%2 ReF,(H/V2) +
+ i(4/m)[(y + 2niH) 2‘ReF2(H//2) - 2/2 ReF,(H/2)] (B.23)

where F, is a form of the Fresnel integral and is

2
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Table B.3
Digits of Accuracy and Decimal Offset Factors for

Pulse Expansion Function Matrix Element Approximations
for Small H and D

Approximations to

H sub-
section
(D-t)de width D = 2H D = 4H
-H
2H Real Imag. Real Imag.
0.1 2.6 2.4 2.0 1.8
0.2 2.0 1.8 1.4 1.4
0.1 6.1 3.0 5.0 2.3
0.2 4.9 2.3 3.8 1.5
decimal offset 0.1 1.0 0.8 1.0 1.0
factor 0.2 0.7 0.7 0.7 0.9
H D+H D-H
lH(l) (D-t)dt = H(l) (t)dt H(l) (t)dt
0 0 0
-H
X
1) .
1: for HO (t)dt use Equation (B.8).
X
1) .
2: for HO (t)dt use Equation (B.9).
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v 2
e

F,(y) e, (B.24)

0
The above approximations are compared in Table B.4 using the Chebyshev
expansions of (2.12) and (2.13) of Chapter 4 as the standard. Equation
(B.22) provides three digit accuracy for small H while (B.23) provides

three digit accuracy for H as large as 0.4.

B.4 The Mutual Terms for an Inverse Square Root Basis Function

Mutual terms for an inverse square root expansion function may be

written as
H

l t_%Hol)(D—t)dt. (B.25)

Substituting (B.6) in (B.25), one obtains

H H

-%,(1) _ 1)
’ t ¥H,’ (D-t)dt = kZO e M) ¢ 23, (t)dt (B.26)

where €. is defined by (B.12). The first approximation is obtained by

retaining only the first two terms of the series in (B.26). This yields
1 H H
1 - .
25D -tyae = 1P @)1 B3 (o) + 28 )| t 25 (0)de.  (B.27)

The second approximation uses (B.2) and the result

3 (6) = %—cos(t/Z), (B.28)

for small t, in (B.27) to obtain
H
t 2H,™ (D-t)dt * 2°2H, (D) Rer(H//Z) +3 Hil)(D) H2cos(H/2). (B.29)
0
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The H '~ term arising in integration by parts is neglected. The third and
fourth approximations are obtained by dropping the H{l)(D) term in (B.27)

and using (B.l) and (B.2) for JO(t). These approximations become

H

t_ﬁﬂél) (D-t)dt = 2 H? Hél) (D) (B.30)

0

and H
(D-t)dt = 2%2 Hol)(D) Rer(H//2). (B.31)

0

The accuracy of the approximations (B.27), (B.29), (B.30), and (B.31l) is
compared in Table B.5. The standard for comparison is given by (2.16) of
Chapter 4. It is clear that none of the one or two term approximations
are suitable for calculating the imaginary part for adjacent elements to
three digits. Equations (B.30) and (B.31l) appear to be useless for almost
any D or H. Equations (B.27) and (B.29) may be useful for non-adjacent
elements, but it too exhibits loss of digits for adjacent elements. This

certainly limits its usefulness.
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C. THE CHEBYSHEV APPROXIMATION FOR t 2 Hﬁl)(t)dt

The Chebyshev coefficients for the integral
X Vx
t Hél)(t)dt =2 Hél)(tz)dt (C.1)

are derived using techniques presented by Luke (1969, Volume I, p. 316).

For simplicity, the coefficients will be evaluated for x between zero and

(1)

0 (t) in terms of

one. The first step is to expand the Hankel function H

Chebyshev polynomials over the range from zero to one. Luke gives

Jo(ax) = nZO AT, (x), 0<x<1, (C.2)

and
[e ]

Yo(ax) = — [y + tnz(ax)] Jj(ax) + nzo BT, (x), 0<x<1. (C.3)

Luke (1969, Volume II, pp. 37-38) gives expressions for An and Bn' These

are
A =e (O 3@/ (C.4)
0 en( ) a/2) .
and
. 2 En(Z‘)_" G N o (2)"" (n+g)k “ntk
" r (m)? k=0 (ntl), (2n+1), k!

where h0=0, h, =p (k+1)-9p (1) = z l; ek=2,k>0, €0=1, (z)k is Pochhammer s
r=1
symbol and ¢ is the psi function. These coefficients for a = 1 have been

evaluated and are presented to thirty decimal places in Table C.1l. Inte-

1

2

grating (C.3) with weighting function t *, one obtains



The Chebyshev Coefficients for H

[oe]

Table C.1

JO(x) = ji: AnTZn(X)

n=0

A

n

(1)
N
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0.88072 55791
-9.11738 80111
2.00187 32125
-0.00001 31454
0.00000 00516
-0.00000 00001
0.00000 00000
-0.00000 00000
2.00000 90000
-0.00000 00000
0.00000 00000
-0.00000 00000

FRoVwouoUsWNDHS| B

=

=
=

02608
68324
23719
22970
72429
29721
00225
NRooo
Pa029
peo0o
Po0a0
Po000

52856
319490
19483
29262
66801
82348
88402
28876
pe028
po0aa
YY)
0000

66716
62454
78708
12718
43705
54703
34607
21352
24848
02182
po00o1
po0oo

90745
63926
78204
29931
31710
96309
00193
76806
25625
69906
36574
20071

(-)"A = 1.000000000000000000000000000000

o]
il
o

= (2/m){y + Qn(x/2)]JO(x) + 2{: BnTZn(X)

| 5

B

n=0

n

0 < x <1

P.07413 80482
0.07235 06431
-0.00177 20598
0.00001 52767
-0.00000 00683
0.00000 00001
-0.00000 00000
0.00000 00000
-0.00000 00000
0.00000 00000
-p.00000 00000
0.00000 00000

HFROWOOJO UL WNDES

=

=
=
—
I
~
(ev}

o]
It
o

27767
28333
14423
28830
67550
88278
P0351
geo0o
go000
NYY)
Ly
Iy

97344
67004
g4775
75475
04271
3355
94783
47628
go048
go00o
00000
00000

91419
27035
99324
92604
89855
2929
94412
96435
84890
#3929
pe002
go000

78719
43214
11845
99781
54205
41047
02370
51147
95181
25221
54571
20136

n o 0.000000000000000000000000000001
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X t
[ 1

2 — Py 2 - 2
J t Yo(t)dt - [y + 2n3x]| t JO(t)dt [ tJ y JO(y)dy dt
0 0 0

X

l t 2 y_(t)dt (C.6)

where ys(t) = X BnTZn(x)' (c.7)
n=0

After substituting the Chebyshev series for Jo(x) and yS(x) in (C.6), all
of the integrals on the right-hand side reduce to the general form

X

2
t ) anTZn(t)dt' (Cc.8)
=0 1
Integrals of this type have been studied by Luke (1969, Volume I, p. 316),

among others. It may be shown that

X

o~1

t 2 ) a T, (t)dt = Vx

— T, (%) (C.9)
n=0 n=0 2 "2n

where the en's are evaluated from the an's with

3 1 o = _a
471 20 ““0 1
and
(n + §-) e + (n + l—) e a - a (C.10)
4 n+l 4 n n n+l
with e .. initially set to zero. The coefficients [en/2] computed in this

manner for the first integral on the right-hand side of (C.6) are used to
write the second integral in the form (C.8) also. The coefficients calcu-

lated in this fashion are displayed in Table C.2. These coefficients were
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Table C.2

The Chebyshev Coefficients for | t © Hﬁl)(t)dt

-1

2 —

ft Jo(t)dt = vxX 7 anTZn(X) 0 < x <1
n=0

a
n

1.95128 14331 93046 58435 50561 29645
-0.04829 48425 46336 80521 03115 22820
P.00042 16807 69656 71393 76178 47120
-0.00000 20373 70321 094095 64250 18892
0.00000 00061 08224 90741 (08427 01487
-0.00000 0000Q 12395 81278 86654 77329
0.00000 00000 00018 11537 14831 66561
-0.00000 00000 0PO00 01995 24402 67038
P.00000 00000 POGGQ 0PPQL 71460 49653
-0.00000 00000 Q0000 Q0000 ©0G118 12785
P.00000 00000 Q0000 00000 POOQP V6669
-0.00000 00000 00000 V0000 Q000D 20003

| B

HR WO WD

—

11
2: 0—)na = 2.000000000000000000000000000002
n=0

X X

/t 2 y,.(t)dt (2/m) [y + &n(x/2)] /t'2 Jg(t)dt + VX Z b T, (x)

0 n=0

bn 0 <x <1
-2.50331 72157 75212 @5291 09138 39593
P.04269 90225 23431 20894 23961 10043
-0.00046 02718 23386 72610 55595 35412
0.00000 25707 84757 42030 31143 73364
-0.00000 00085 44759 42330 75086 87831
P.00000 00QA0 18749 35286 34560 71075
-0.00000 00000 90029 15404 84394 14376
P.00000 00000 90000 93379 V4162 94632
-0.00000 00000 00000 00003 03142 01976
P.00000 00000 00000 9PP0Y 090216 73013
-0.00000 00000 00000 00000 Q0000 12638
0.00000 00000 00000 00000 Q0000 Q0006

HFROVONOUBWNHS| 5

—

1T§: (—) ™ = -7.999999999999999999999999999996
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checked for accuracy by comparing the numerical values of the Chebyshev
series with those of the power series representations for the same inte-
grals evaluated at 0.ln, n=0,1,°°-,10. The two expansions were carried
out to 32 decimal places and they agreed to at least 31 decimal places for
all eleven arguments. The power series representations that were used are

given by Luke (1962, pp. 44-45) as his equations 2.3(1) and 2.3(4).
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D. COMPUTER PROGRAMS

Computer Program for =-polarization Half-Plane Current.

These routines were written by
Donald Farness Hanson between
February, 1975 and June, 1975.

The following MAIN program solves the c¢lassical half-plane
problem with wplane wave incidence for the E-polarization (E-vector
parallel to the edge) current minus the so-called physical optics
current, (IE-IPO). This computer program is written in FORTRAN 1V
for the IBM 360 computer at the University of Illinois. The entire
program as given here reguires 129 seconds of IBM 360/75 computer
time from beginning to end(29 seconds of compile time; 10@ seconds
of execution time). It compares a hybrid expansion with a
pulse-everywhere expansion for the numerical solution of the
integral equation by the method of moments. The hybrid basis
function set used is one with a 1/SQRT(z) expansion function 1in a
half-width segment at the edge and with 199 full-width pulse
expansion functions away from the edge. The pulse-everywhere basis
function set used is one with a half-width pulse expansion function
at the edge and with full-width pulse expansion functions away from
the edge. Matrix elements are evaluated using methods which yield
at least 10 decimal vplace accuracy. The almost-Toeplitz nature of
this matrix is wutilized by LTPLZ to cut down on reauired computer
time. MAIN reserves storage locations for arrays which are passed
as arguments through several levels of subprograms. ISPMOM sets up
the required matrices and right-hand-side, and LTPLZ uses these
matrices to form an inverse and generate the result. PNTOWT takes
the result and compares it with the known analytic solution by
printing out the respective real parts, imaginary parts, magnitudes,
and phases along with their differences. PNTOWT also stores the
results on disk for later use. MAIN calls ISPMOM, PULMOM, LTPLZ,
and PNTOWT directly and many other subprograms indirectly. Refer to
each of these routines for a list of the subprograms that they in
turn call. The RESULTs of MAIN must be divided by 2Z#=376.731 ohms
in order to give units of (A/m)/(V/m).

COMPLEX*16 IH@ (200), ISRTHO(200), RHS(800), RESULT(86@),21(200),
1 A(200) ,A1(200) ,IEMPO(200) ,HN1(32)

REAL*8 JN(88), JIN(32), SK(88), UN(88), TAD(4), DEZ, KZ(200),
1 XNORM, H

INTEGER NCASES, NSIZE, NH, NMAX, PNTOPT, IER, I

LOGICAL GORH(88), ROOT

DATA TAD/45.D0, 9¢.D0, 135.D@, 180.D@ /
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NSIZE=230
DEZ = 14.D0
NCASES=4
NH = 32
NMAX = 85
PNTOPT = #
Crmm e e e e e e e e e e e e e e = - —
C Set up matrices for hybrid exvansion and evaluate
C Right-Hand Sides.
C _______________________________________________________________________
CALL ISPMOM(NCASES,TAD,DEZ,NSIZE,KZ,IH0,ISRTHO,RHS,NH,HN]1, NMAX,
1 JN, JIN, SK, UN, GORH, PNTOPT )
C _______________________________________________________________________
C Print values of matrix elements.
O gy gy g gy g g g g S Iy SO
PRINT 1, (KZ(I), IH@(I), ISRTHA(I), I=1, NSIZE ) i i i
1 FORMAI(“1°,T12, "MATRIX ELEMENTS //T9, 'X’,T35, 149" ,T89, "ISRTHO "/
1 (T2,0PFl3.3,T13,°<",1PD23.15, ", ,1X,n23.15, ">, ,5%, "<",D23.15,
2 7,7 ,1X,D23.15,">" ) ) \
C _______________________________________________________________________
C Evaluate (IE-IPO) by matrix inversion for hybrid exwmansion.
C e et e e e e e e e e e e e e e e e e e e i e e - =
CALL LTPLZ( ISRTH®,IB®,21,A,Al1,NSIZE,RHS,RESULT,NCASES,XNORM,IER)
IF( IER .NE. @ ) GO TO 19
ROOT = .TRUE.
H = 1,00/(2.DA*DEZ)
T L b SR EpUSp USRI SRR Iy Uy PRy UNpUSp My S Sy g sy g uny wng g g g s g iy g NS
C Print out results for (IE-IPO) for hybrid expansion.
C _______________________________________________________________________
CALL PNTOWT( TAD, NSIZE, NCASES, KZ, IEMPO, RHS, RESULT, ROOT, H )
Crmmrmrmre e e e e e - i — — — ———— o — o o > o A o A o ot . o s
C Set up matrices for pulse-everywhere expansion.
C _______________________________________________________________________
CALL PULMOM( DEZ, NSIZE, KZ, IHO, ISRTH@ )
C _______________________________________________________________________
C Print values of matrix elements.
C _______________________________________________________________________
PRINT 1, (KZ(I), IH@(I), ISRTH@(I), I=1, NSIZE )
o e
C Evaluate (IE-IPO) by matrix inversion for pulse-everywhere
C expansion.
C _______________________________________________________________________
CALL LTPLZ (ISRTH@,IH®,Z1,A,Al1,NSIZE,RHS,RESULT,NCASES,XNORM, IER)
IF( IER .NE. @ ) GO TO 19
C _______________________________________________________________________
C Print out results for (IE-IPO) for pulse-everywhere expansion.
C _______________________________________________________________________

ROOT = .FALSE.
CALL PNTOWT{ TAD, NSIZE, NCASES, K%, IEMPO, RHS, RESULT, ROOT, H)
STOP
18 PRINT 5
5 FORMAT( @CAME TO 13 IN MAIN. )
STOP
END
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Computer Program for =-polarization Half-Plane Current. Page

OO0 0n000000n

Subroutine ISPMOM fills the matrices that are required as input
to the matrix inversion routine LTPLZ for the hybrid basis function
case. These arrays are ISRTH@, IHO, and RHS. All other parameters
in the parameter list are either inputs or dimensioned arrays. IHO
is an output vector of length NSIZE which 1is filled with numbers
corresponding to the first column of the Toeplitz matrix which
results when double-wide pulses are used throughout as basis
functions. ISRTH@ is an output vector of length NSIZE which is
filled with numbers corresponding to the 1/SQRT(z) half-wide initial
subsection. RHS 1is an output array of length NC*NSIZE which is
filled with the values of the Right-Hand Side for (IE-IPO) for each
of the angles of incidence THETAD=45, 90, 135, and 180. KZ is an
output array of length NSIZE and contains the values of the match
points. NC, TAD, DEZ, NSIZE, NH, NMAX, and PNTOPT are all input
parameters. NC 1is the number of cases or angles to be
considered (NC=4). TAD 1is an array of the angles and is of length
NC. DEZ is one over the subsection width. NSIZE is the number of
subsections. NH 1is the number of terms to be taken in sums of
weighted Hankel functions and must bg 32 or less. NMAX 1is the
number of terms to be taken in sums of Bessel functions. PNTOPT is
the underflow/overflow printing option(see HANKEL). HN1l and JIN are
arrays of length NH(see GTJN, HANKEL). JN, GORH, SK, and UN are
arrays of length NMAX(see BESSEL, SKS, and UNS). ISPMOM directly
calls GTJN, SELFTM, SELFSN, SUMINC, IA2BHO, BESSEL, HANKEL, SKS,
SUMHJI, and UNS. Refer to each of these routines for a list of the
subprograms that each in turn calls.

SUBROUTINE ISPMOM(NC,TAD,DEZ,NSIZE,KZ,IH@,ISRTH@,RHS,NH,HN1,6 NMAX,
1l JN,JIN,SK,UN,GORH,PNTOPT)

COMPLEX*16 SELFTM, SELFSN, IH@ (1), ISRTHO@ (1), ESUM, RHS(1l) ,HO1,
1 HN1(1), IA2BHO, SUM, IZIHO1

REAL*8 H, JI@, JIN(l), ZETA, KZ(1l), THETAD, TAD(l), UPLIM, LOWLIM,
1 FN, DFLOAT, J@, JN(1), SO, SK(l), UN(l), DEZ, TDEZ

INTEGER NM, NMAX, PNTOPT, PN, OFFSET, J, NH, N, NP1, NPNP1l, NSIZE,
1 NC, I, NSM]1

LOGICAL GORH(l), T/.TRUE./

TDEZ = 2.D@*DEZ

H = 1.D@/TDEZ

PN PNTOPT

NM NMAX

NSM1 = NSIZE-1

CALL GTJN( H, NH, JI@, JIN, PN )
ZETA = (0.D0
KZ (1) = 0.D@

IH@ (1) = SELFTM(H)

ISRTHO (1) = SELFSN(H)
pO1J =1, NC
OFFSET = (J-1)*NSIZE
THETAD = TAD(J)



Computer Program for -nolarization Half-Plane Current.

CALL SUMINC(ZETA, THETAD, 1, UN, JN, S0, SK, ESUM,
RHS( OFFSET + 1 ) = ESUM

UPLIM = H

DO 2 N=1, NSM1

NP1 = N+1

NPNP1 = N+N+1

FN = DFLOAT( NPNP1l )

ZETA = DFLOAT(N)/DEZ

KZ (NP1) = ZETA

LOWLIM = UPLIM

UPLIM = FN/TDEZ

IA0 (NP1) = IA2BHO (LOWLIM, UPLIM )

PN )
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Page

Calculate matrix element corresponding to 1/SQRT(z)
subsection, ISRTHO.

initial

CALL HANKEL( ZETA, NH, T, HO1, HN1l, &100, PN )
CALL SUMHJI( NH, HOl1, HN1l, JI®, JIN, SUM, PN )
ISRTH@ (NP1) = SUM \

100

CALL BESSEL( ZETA, NM, GORH, J@, JN, &100, PN )
CALL SKS( ZETA, NM, S8, SK, PN )

DO 2 J=1, NC

OFFSET = (J-1)*NSIZE

THETAD = TAD(J)

CALL UNS( THETAD, NM, UN )

CALL SUMINC( ZETA, THETAD, NM, UN, JN, S0, SK, ESUM,

RHS( OFFSET+NP1l) = ESUM

RETURN

PRINT 3

FORMAT( ‘@FROM ISPMOM, WENT TO 100.° )
STOP

END

PN )
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a0 nn

C—--

Subroutine PULMOM fills the matrices that are required as input
to the matrix inversion routine LTPLZ for the pulse-everywhere basis
function case. DEZ, NSIZE, and KZ are inputs and IH@ and IHWH@ are
outputs. DEZ 1is one over delta z, the subsection width. NSIZE is
the number of subsections. XZ is an array of length NSIZE of the
match points., IHP is the same as in ISPMOM. IHWH@ is an array of
length NSIZE filled with numbers corresponding to the half-width
pulse 1initial subsection. PULMOM directly calls SELFTM and IA2BH@.
Refer to these routines for a list of their called subvrograms.

SUBROUTINE PULMOM( DEZ, NSIZE, KZ, IH@, IHWHO )

INTEGER NSIZE

COMPLEX*16 IHQ (NSIZE), IHWHQ(NSIZE), SELFTM, IZIHQAl, IA2BHO
REAL*8 DEZ, KZ(NSIZE), H, FN, DFLOAT, ZETA, LOWLIM, UPLIM
INTEGER I, N, NP1, NPNP1l, NSM1l, OFFSET

H=1.D8/(2.DO*DEZ)

Fill IH@® and IHWH@.

_____________________________________ e
IHA (1) = SELFTM(H)
IHWH@ (1) = IHO(1)/2.D@
UPLIM = H
NSM1 = NSIZE - 1
DO 2 N=1, NSM1
NP1 = N+1
NPNP1 = N+N+1
FN = DFLOAT( NPNP1 )
ZETA = KZ( NP1l )
LOWLIM = UPLIM
UPLIM = FN/(2.D@*DEZ)
IHQ (NP1) = IA2BH@A( LOWLIM, UPLIM )
2 IHWHO( NP1 ) = IA2BHO( ZETA-H, ZETA )

RETURN
END
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C Subroutine SUMHJI calculates a matrix element associated with
C the 1/SQRT(z) edge expansion function for the hybrid case. SUM is
C given by

C

C NMAX

C SUM = JI@*HPLl + 2 § (JIN*HNI1)

C N=1

C

C where JI@ and JIN are the outputs of GTJN, and H@1l and HN1l are the
C outputs of HANKEL. NMAX must be 1 or more, but 32 or less(see
C HANKEL) . PNTOPT is the wunderflow printing option(see HANKEL).
C SUMHJI calls UNDRFL.

C _____________________________________________________________________

SUBROUTINE SUMHJI (NMAX, H@1, HN1l, JI@, JIN, SUM, PNTOPT )
COMPLEX*16 SUM, H@l, HNl1(l), S(2), CBAR, ZERO/(9.D9,0.D0@)/
REAL*8 JIf, JIN(1l), CC(2)

INTEGER NMAX, KB, K, PNTOPT, PNTOP

LOGICAL UFL

EQUIVALENCE( CBAR, CC )

EXTERNAL UNDRFL

COMMON/$2/ UFL

COMMON/$3/ PNTOP

UFL = .FALSE.

PNTOP = PNTOPT

IF( PNTOP-1 ) 1990, 1902, 100

199 CALL ERRSET( 208, 320, -1, 1, UNDRFL )

GO TO 1

192 CALL ERRSET( 208, 320, 8, 0, UNDRFL )

1l UFL = .TRUE.
S(1) JIA*HO1
S(2) ZERO

DO 2 K=1, NMAX
KB = NMAX - K + 1

If JIN is zero, do not sum for this K.

IF( JIN(KB) .EQ. @.D@ ) GO TO 2

If the overflow flag for the imaginary part of HN1 is detected,
skip this term.

CBAR = HNI1 (KB)
IF( CC(2) .EQ. -1.D70 ) GO TO 2
S(2) = S(2) + HNI1(KB)*JIN(KB)
2 CONTINUE
UFL = .FALSE.
SUM = S(1) + S(2) + S(2)
RETURN
END
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C Subroutine SUMINC evaluates the right-hand side for (IE-IPO)
C for a given displacement X and angle of incidence THETAD. The
C right-hand side is evaluated as sums of Chebyshev polynomials UN
C weighted with Bessel functions JN and with a function whose name was
C coined as S. ESUM 1is evaluated wusing eaguations 10.3(3) and
C 10.3(19), wvages 239 and 248, of Luke’s, "Integrals of Bessel
C Functions." UN is the output array of UNS for angle THETAD. JN
C is the output array of BESSEL and S@# and SK are the outputs of SKS.
C Refer to these routines for the details. PNTOPT is the underflow
C printing option(see HANKEL). NMAX is the number of terms to be
C taken and must be 2 or more. Accurate results to about 18 decimal
C places are generated for NMAX=85 and X=28. Results for X between 20
C and 40 are accurate to at least one decimal place when NMAX=85.
C SUMINC calls UNDRFL.

C _______________________________________________________________________

SUBROUTINE SUMINC( X, THETAD, NMAX, UN, JN, S@, SK, ESUM, PNTOPT )
COMPLEX*16 DCMPLX, ESUM, T1, T2, IB, 1/(©#.D@,1.D0)/,
1 ZERO/(9.D0,0.D0)/

REAL*8 X, THETAD, UN(l), JN(1), SO, SK(l), SJ(2), SY(2), DLOG,
1 DA3S, DSIN, DCOS, PRODJ, PRODY, THETA, CTA, STA, ARG

REAL*8 TWOOPI/0.63661977236758134308D8/,
1 GAMMA/©.57721566490153286061D0/,PI1/3.14159265358979323846D8/
INTEGER NMAX, KB, K, PNTOPT, PNTOP, NMM1l, MOD, Ll

LOGICAL UFL

EXTERNAL UNDRFL

COMMON/S$2/ UFL

COMMON/S$3/ PNTOP

IF( X .EQ. #.DO® ) GO TO 7

UFL = .FALSE.

PNTOP = PNTOPT

IF( PNTOP-1 ) 1900, 102, 100

129 CALL ERRSET( 208, 320, -1, 1, UNDRFL )

GO TO 1

192 CALL ERRSET( 208, 320, 0, @, UNDRFL )

1 NMM1 = NMAX-1

SJ(1) = 0.D9
SY(l) = 0.D0
SJ(2) = 9.D9
SY(2) = 0.D9

DO 6 K = 1, NMMI]

KB = NMM1-K+1

UFL = .TRUE.

PRODJ UN (KB) *JN (KB+1)
PRODY UN (KB) *SK (KB)
UFL = .FALSE.

L1 = MOD(KB, 4 ) + 1
GO TO (2,3, 4,5), Ll
PRINT 10
19 FORMAT( @ , 75X, “BAD GO TO IN SUMINC. )



197

Computer Program for -polarization Half-Plane Current. Page
STOP
2 SJ(1) = SJ(1) + PRODJ
SY(1l) = SY(1l) + PRODY
GO TO 6
3 8J(2) = SJ3(2) - PRODJ
SY(2) = SY(2) - PRODY
GO TO 6
4 SJ3(1l) = SJ(1) - PRODJ
SY(l) = SY(1) - PRODY
GO TO 6
5 8J(2) = SJ(2) + PRODJ
SY(2) = SY(2) + PRODY
6 CONTINUE
SJ(1l) = SJ(1) + JIN(1)
SY (1) = SY(1) + S9
C Complete the evaluation of ESUM.
C _______________________________________________________________________
THETA = (THETAD/180.D@)*PI \
CTA = DCOS( THETA )
IF( THETAD .EQ. 90.D@ ) CTA = 0.DJ
STA = DSIN( THETA )
Tl = DCMPLX( SJ(1l), SJ(2) )
T2 = DCMPLX( SY(1l), SY(2) )
IB = T1+TWOOPI*I*( (GAMMA+DLOG(X/2.D@))*T1 - T2 )
ARG = X*CTA
ESUM = 4.D@*( (THETAD/180.D@) *DCMPLX (DCOS (ARG) ,-DSIN (ARG)) - STA*IB)
RETURN
Cmmm e e e e e e e e e e e e e e
C Treat the special case X=0.
C _______________________________________________________________________

7 ESUM = DCMPLX( 4.D@*(THETAD/18¢.D@), @.DO )
RETURN
END
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Subroutine UNS evaluates the Chebyshev polynomials
UN( cos(THETA) ) for N from one to NMAX (U0 (cos(THETA))=1). The
recursion relation 3.5.1(14) from Luke’s book, "The Svecial
Functions and Their Approximations" is used. The result accumulates
error guickly, so special measures were taken to insure 10 decimal
place accuracy for NMAX up to 85 and for any THETA between # and 180
degrees which is an exact multiple of 15 degrees. THETA 1is the
angle of incidence in degrees. NMAX is the order of the highest
order Chebyshev polynomial to be found. UN is an array of length
NMAX containing the values of UN( cos(THETA) ). These numbers are
used in SUMINC. UNS is complete by itself. It calls no other
subprograms.

SUBROUTINE UNS( THETA, NMAX, UN )

REAL*8 THETA, X, DCOS, F, UN(1), TA, RTA
REAL*8 PI/3.141592653589793D0/

INTEGER NMAX, I, ITHETA, MOD, ICHECK

RTA = PI*(THETA/180.D0)

X = LCCOS(RTA) )

UN(1l) = X + X

IF( THETA .EQ. 90.D@ ) UN(l) = 0.D@
IF( NMAX .EQ. 1) RETURN

F = UN(1)

UN(2) = F*F - 1.D0

IF( THETA .EQ. 68.D0 ) UN(2) = 0.D@

IF( NMAX .EQ. 2 ) RETURN

ITHETA = THETA

TA = ITHETA

IF( (THETA-TA) .NE. 0.D@ ) GO TO 2

IF( MOD(ITHETA, 15) .NE. ¢ .OR. MOD(ITHETA,188) .EQ. 8 ) GO TO 2
ICHECK = ITHETA + ITHETA + ITHETA

DO 1 I=3, NMAX
ICHECK = ICHECK + ITHETA

UN(I) = F*UN(I-1) - UN({(I-2)

IF( MOD(ICHECK, 188) .EQ. ©® ) UN(I) = 0.D#
1 CONTINUE

RETURN

2 DO 3 I = 3, NMAX

3 UN(I) = F*UN(I-1) - UN(I-2)
RETURN
END
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Subroutine SKS evaluates the terms which don’t depend on THETA
of the non-logarithmic term of the integral from zero to X of
exp(itcos (THETA) )Y@ (t)dt as given by 13.3(18a) on page 240 of Luke’s
"Integrals of Bessel Functions." This is an infinite power series
depending on m and k(see Luke). The function name was coined to be
S(K,X). S@ is the value of this function for K= and SK is an array
of values for K from 1 to NMAX. These numbers are used in SUMINC.
For X 1less than 20, NMAX should be at least 51 for convergence.
PNTOPT is the wunderflow printing option(see HANKEL). SKS was
checked by comparison of these results with those obtained by
expanding S in a series of Bessel functions, eq. 10.3(18b) of Luke.
SKS calls UNDRFL.

SUBROUTINE SKS( X, NMAX, S0, SK, PNTOPT )
REAL*8 X, S8, SK(l), KFACTR, HMF, X02, X02sQ, H@#, FK, H, P,
1 MFACTR, FM, FMK1l, DABS , DFLOAT

INTEGER NMAX, PNTOPT, PNTOP, KP1l, K , M, NMP1
EXTERNAL UNDRFL

LOGICAL UFL \
COMMON/$2/ UFL

COMMON/$3/ PNTOP

UFL = .FALSE.

PNTOP = PNTOPT

IF( PNTOP - 1 ) 100, 102, 100

120 CALL ERRSET(208, 320, -1, 1, UNDRFL )

GO TO 1

192 CALL ERRSET( 208, 320, @, 0, UNDRFL )

1 NMP1 = NMAX+1

X02 = X/2.D@

X02S0 = X02*X02

XKFACTR = 1.D#

HO = 0.DO

DO 5 KP1 = 1, NMP1

K = KP1l -1

FK = DFLOAT (K)

IF( KFACTR .EQ. #.D@ ) GO TO 3

HO = HO + 1.D@/(FK+1.D@)
HO

F

M = DFLOAT (M)

MKl = FM+FK+1.D®

H=H+ 1.D8/FMK1

MFACTR = -MFACTR*(X02SQ/(FM*FMK1))
HMF = H*MFACTR

P = P + HMF

IF( DABS( HMF ) .LT. 1.D-15 ) GO TO 3
M=M=+1
GO TO 2
3 UFL = .TRUE.
KFACTR = KFACTR* (X02/(FK+1.D@))
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IF( DABS(KFACTR) .LT. 1.D-70) KFACTR = 0.D#@
IF( K .NE. @ ) GO TO 4
S@ = P*KFACTR
GO TO 5
4 SK(K) = P*KFACTR
5 CONTINUE
RETURN
END
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C Function I@XH@1 evaluates the integral from 2zero to X of
C HPl(t)dt wusing Chebyshev polynomials as given in Table 27 on page
C 334 of Volume II of Luke’s book, "The Special Functions and Their
C Approximations." This routine 1is used to evaluate elements in the
C matrix for pulse expansion functions. I@XH@1 1is used by IA2BHO,
c 1Z2IHA1, and SELFTM. 1I@XH@1l calls EAT2P1.

C _____________________________________________________________________

COMPLEX FUNCTION I@XH@1*16 (X)

IMPLICIT REAL*8 (D)

COMPLEX*16 DCMPLX

REAL*8 XX, X, X08, GAMMA, TWOOPI, IJ@, SUMY, A(l17), B(17)

DATA A/0.00150D-15, -0.69949D-15, 5.79477D-15, -0.0029408710D-10,
1 0.1286892765D-10, -4.7960704238D-10, 0.001500207418186D-5,
2 -0.038695337761818D-5, 0.805230017147464D-5, -13.148973200727474D

3-5, 0.00162455576482273217D0, -0.01444107253850054169D0,
4 ¢0.08576038744155828731D4F, -0.30180691211699830875D8,
5 0.50821888566078927112D0, -0.36520274074158537488D0@,
1 1.29671754121952984167D0/,B/0.080324D-15, -0.21831D-15,

2 11.99595D-15, -0.0059495975D-10, 0.2537749742D-10,

3 -9.1898449486D-10, 0.002781957053702D-5, -0.069083548549799D-5,
4 1.374382109086322D-5, -21.244292114418655D-5,

5 0.00244754014990944840D49, -0.01978679721180859820D4,
6 0.10180664216242309366D43, -0.27450260739390063315D9,
7 ©0.19604604501712995275D0, 9.16707193818110339620D49,
8 1,52325892745358903192D48/

DATA TWOOPI/0.63661977236758134308D8/,
1 GAMMA/0.57721566490153286061D0/
XX = DABS(X)

IF( XX .GT. 8.D@ ) GO TO 2

IF( XX .EQ. #.D9 ) GO TO 1

X08 = XX*0.125D0

CALL EAT2P1 (X08, 16, A, 1J0 )

CALL EAT2P1( X08, 16, B, SUMY )

I9XHP1 = DCMPLX(IJ@, TWOOPI* (GAMMA+DLOG (XX*@.5D@) )*IJ@-SUMY )
RETURN

1 IPXHO1 = DCMPLX( 0.D9@, 0.DO )
RETURN

2 PRINT 3, XX
3 FORMAT('Q0°,70X, I0XH@1l WAS CALLED WITH ARGUMENT X=",G20.12,°.°//)
STOP
END
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C Function IZIH@1 evaluates the integral from X to infinity of
C HA1(t)dt wusing Chebyshev polynomials as given in Table 27 on page
c 335 of Volume II of Luke’s book, "The Special Functions and Their
C Approximations.” This routine is used to evaluate elements in the
C matrix for pulse expansion functions, IZIH@1 is used by IA2BHO.
C IZIHQ1 calls EATSTR.

COMPLEX FUNCTION IZIH@1*16 (X)
IMPLICIT REAL*8 (D)
COMPLEX*16 DCMPLX, I@XH@l, IOZ, EOR, ONE/(1.D0,0.D0)/
REAL*8 XX, X, FOX, PIO4, R20PI, XPPIO4, RC(26), IC(26), RECT, IECT
DATA RC/-0.03489D-15, 0.16683D-15, -0.51320D-15, 1.07730D-15,
1-9.80559D-15, -5.70713D-15, 36.07236D-15,-127.37786D-15,
2 288.66165D-15, -151.48359D-15, -0.0242797151D-19,
3 0.1490480479D-10, -0.5151791688D-10, 3.8916779341D-10,
4 2.3353692269D-19, -27.8292764282D-14, 128.5294903326D-10,
5 -268.5706468353D-10, -0.010699959818439D-5, 0.141140889467207D-5,
6-0.682861017202808D-5,-0.208371347609414D-5,36.927699265513937D-5,
7 -0.00327411179733924011D4, -0.01622955223898783538D42,
#.98740761581488426270D0/, IC/ -0.05463D-15,0.07387D-15,
9.09161D-15,-1.06272D-15, 4.39396D-15, -12.15265D-15,
19.76575D-15,17.95082D-15, -292.98739D-15, 0.0133843845D-10,
-0.0382166065D-10, 0.0480015078D-10, ©.2163344301D-10,
-1.8616117165D-10, 7.5741249246D-10,-15.3672496861D-10,
-37.8906539485D-10,0.005344509822653D-5,-0.026476639696766D-5,
0.043762392901943D-5, ©.496153395628297D-5,-5.462157649813484D-5,
0.19647777633032259D-3, 0.240404107087261157D-2,
-9.05561793742411522950D40, -0.05776667474099451444D0 /
DATA PIO4/.78539816339744830962D08/,R20P1/.79788456080286535588D0/
XX = DABS(X)
IF( XX .LT. 7.D@ ) GO TO 1
XPPIO4 = XX+PIO4
EOR = R20PI*DCMPLX (DCOS (XPPIO4) ,DSIN(XPPIO4))/DSQORT (XX)
FOX = 5.D@/XX

RX~JOOU s W

CALL EATSTR( FOX, 25, RC, RECT )
CALL EATSTR( FOX, 25, IC, IECT )
IZIHA1 = EOR*DCMPLX (RECT, IECT)
RETURN

1 I0Z = IPXHO1 (XX)
IZIHA1 = ONE-I0Z
RETURN
END
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C
C pulse
C center.

7200

827

places
More or less decimal places will be lost
between A
IA2BHO calls either IZIH@1 or I@XHA1.

relation

Function IA2BH@ evaluates matrix elements for
functions by taking the difference between I@XH@1 evaluated at B and
A or between IZIH@1l evaluated at A and B.
accuracy are lost in taking this difference for B=A+8.1.
depending

of

-polarization Half-Plane Current.

and B,

COMPLEX FUNCTION IA2BH@*16 (A,

COMPLEX*16 X, Y,

IZIHQ1,

REAL*8 A, B, AA, BB, DABS

AA
BB

DABS (A)
DABS (B)
IDINT (AA*Q

IF( I+J .EQ. @
X = IZIH@1 (AA)
Y = IZIH@1 (BB)
IA2BHO = X-Y
RETURN

X = IQXHQ1 (BB)
Y = IQXHQ1 (AA)
IA2BHO = X-Y
RETURN

END

expansion

.14D0 )

IDINT( BB*@.14D@ )

) GO TO 827

Function SELFTM evaluates the self terms

functions of

COMPLEX FUNCTION SELFTM*16 (A)

COMPLEX*16 X,

IZIHA1, I@XHA1,

REAL*8 A, AA, DABS

AA = DABS( A )
I = IDINT( AA*
IF( I .EQ. 9 )

X = IZIH@1 (AA)

#.14D0 )
GO TO 027

SELFTM = TWO* (ONE-X)

RETURN
SELFTM =
RETURN
END

TWO*IQXH@1 (AA)

203

Page 1

pulse expansion

Approximately two decimal

on the actual

IA2BH@ is used by ISPMOM and PULMOM.

B)

IAXHA1

width 2A with

SELFTM is used by ISPMOM and PULMOM.

ONE/(1.D6,0.D0)/,

for

the double-wide
match point in the

TWO/(2.D@,0.D@)/
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C Function SELFSN evaluates the integral from @ to H of

C (1/SQRT(t))HOL1 (t)dt. The Chebyshev coefficients were derived by

C methods given by Luke in "The Special Functions and Their

C Approximations." The coefficients are given elsewhere in this work.

C SELFSN is used in ISPMOM.

COMPLEX FUNCTION SELFSN*16 (H)

COMPLEX*16 DCMPLX

REAL*8 DSQRT, H, A(7), B(7), GAMMA, TWOOPI, DLOG, Y(2), HSQ

DATA A/ 0.00000000000001811537D4, -0.00000000001239581279D4,
P.00000000610822490741D49, -0.900002037370321040696D3,
0P.00042168076965671394D47, -0.04829484254633680521D49,
1.95128143319304658436D@ /

DATA B/ -0.00000000000002915405D0, 0.00000000001874935286D40,

1 -0.00000000854475942331DF, 0.00000257078475742030D9,

2 -0.00046027182338672611D4%, 9.04269902252343120894D9,

3 -2,50331721577521285291D4

DATA TWOOPI/9.63661977236758134308D93/,

1 GAMMA/0.57721566490153286861D@/

IF( H .EQ. 8.D8 ) GO TO 2
IF( H .GT. 1.D8 ) GO TO 1%
HSQ = Hd*H

w N =

CALL EATSTR( HSQ, 6, A, Y(1) )
CALL EATSTR( HSQ, 6, 3, Y(2) )
SELFSN=DCMPLX (Y (1) , TWOOPI* (GAMMA+DLOG (H/2.D@))*Y(1)+Y(2))*DSQRT (H)

RETURN

2 SELFSN= DCMPLX( #.D@, @.D9 )
RETURN

19 PRINT 1, H

1 FORMAT( ‘9", 75X, “SELFSN WAS CALLED WITH ARG=", 1PD12.4/)
STOP

END
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Subroutine GTJN is used in evaluating matrix elements for the
1/SQRT(z) expansion function present in the hybrid expansion and is
used with SUMHJI and HANKEL. GTJN evaluates the integral from @ to
H of (1/SQRT(t))JIN(t)dt for N from @ to NMAX. ITJ@ is the value for
N=g and ITJIN is an array of length NMAX which contains the wvalues
for N=1 to NMAX. PNTOPT is the wunderflow printing option(see
HANKEL) . The power series expansion given by 2.2(1) on page 44 of
Luke s, "Integrals of Bessel Functions" 1is used for these
evaluations. Numbers were checked by comparison of this ovower
series with Luke’s eqguivalent expansion in series of Bessel
functions, eg. 2.4(1), page 51 of "Integrals of Bessel Functions."
GTJIN calls UNDRFL and EATSTR.

SUBROUTINE GTJN( H, NMAX, ITJ@, ITJN, PNTOPT )

REAL*8 ITJ@, ITJN(l), H, HO2, HO2SQ, P, Q, R, DSQRT, SH, AK, AN,
1 DFLOAT, QP, DABS, A(7)

INTEGER N, K, NMAX, PNTOPT, PNTOP

LOGICAL UFL
COMMON/$2/ UFL
COMMON/$3/ PNTOP

DATA A/ 0.00000000000001811537D0, -0.90000000001239581279D49,

1 0.00000000610822490741D43,
2 P.00042168076965671394D4@,
3 1.95128143319304658436D0
PNTOP = PNTOPT

IF( PNTOP-1 ) 100,
CALL ERRSET( 208,
GO TO 134

CALL ERRSET( 208,
R = H*H

SH = DSQRT (H)

HO2 = H/2.D#@

HO2SQ = HO2*HO2

1902, 100
120 32, -1, 1,
192
104

32, 8, 0, UNDRFL )

If H is greater than 1.D@, STOP.

IF( H .GT. 1.D@ ) GO TO 19

s = = A = 4 A ———— = = = . —— -

CALL EATSTR( R,
ITJ@ = ITJID*SH
IF( NMAX .EQ.
P=1.D0

UFL = .TRUE.
DO 4 N=1, NMAX
AN = DFLOAT(N)
P*HO2/AN
2.D@/ (AN+AN+1.D@)
1.D0

6, A, ITJO )

@ ) RETURN

[l | I T |

K = DFLOAT (K)

= =Q*HO02SQ/ (AK* (AN+AK))
= Q/ (AK+AK+AN+0@.5D@)
R=R+QP

OS’TO;U'U

| @)
av]

UNDRFL )

-0.00000203737032104096D32,
-0.04829484254633680521D4,
/

- - — = — ————— ——
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IF( DABS(QP) .LT. 1.D-15 ) GO TO 3
K=K+1
GO TO 2

3 ITIN(N) = SH*P*R

IF( DABS( ITJN(N) ) .GT. 1.D-70 ) GO TO 4
ITIN(N) = @.D@
P=0.D@
Q=0.D@
R=0.D#

4 CONTINUE
UFL = .FALSE.
RETURN

13 PRINT 1, H

1 FORMAT( ‘@

STOP
END

.

, 75X, 'GTJN WAS CALLED 'WITH ARG=", 1PD12.4/)
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Subroutine BESSEL evaluates the Bessel functions JN for
argument X and for orders N from zero through NMAX. BESSEL is used
in ISPMOM to provide values for SUMINC. Extreme numerical problems
occur when the recurrence relation is used directly in the forward
direction. For this reason, the recurrence relation is used in the
backward direction to form a continued fraction expansion. The
details are too lengthy to describe here. The method is due to G.
Blanch, "SIAM Review", V.6, no. 4, Oct. 1964. GORH is a logical
array of length NMAX that is required by Blanch’s method. J@ is the
value of J@ and JN is an array of length NMAX containing the values
of JN for N from 1 to NMAX. * is a label to where the calling
program should jump when either X or NMAX is less than zero. PNTOPT
is the underflow printing option(see HANKEL). BESSEL is accurate to
at least 12 decimal vplaces. BESSEL calls UNDRFL, H@1S, H1l1lS, and
GORHVU.

SUBROUTINE BESSEL( X, NMAX, GORH, J@, JN, *, PNTOPT )
IMPLICIT REAL*8(A-H, 0-2, $), INTEGER( I-N )
COMPLEX*16 H@1S, H11lsS, HC
REAL*8 J@, JIN(1), F(2) \
INTEGER V, PNTOPT, PNTOP, VP1
LOGICAL GORH(1l), LP, UFL
EQUIVALENCE( HC, F )
EXTERNAL UNDRFL
COMMON/S$2/ UFL
COMMON/$3/ PNTOP
UFL = .FALSE.
DO 1 I =1, NMAX
1 GORH(I) = .FALSE.
NM = NMAX
NMM1 = NM-1
XX = X
PNTOP = PNTOPT
IF( XX.LT. 6.D@ .OR. NM.LT. @ ) RETURN1
IF( XX .EQ. 6.D8 ) GO TO 44

HC = H@1S(XX)
Jg = F(1)
IF( NM .EQ. & ) RETURN

Evaluate JN(1l) using Chebyshev polynomial expansion.

HC = H11S(XX)

JN(1) = F(1)

IF( NM .EQ. 1 ) RETURN
A = 2,D@/XX

e s e e o o = = - = = e = = — —— - —— —— -

IF( PNTOP-1 ) 100, 102, 100

100 CALL ERRSET( 208, 32, -1, 1, UNDRFL )

GO TO 8

192 CALL ERRSET( 208, 32, 0, 0, UNDRFL )
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8 J = IDINT( XX )
IF(J .LT. NM ) J = NM
I =24
18 M =1
IF( A*DFLOAT(I) .GE. 2.5D@ ) GO TO 12
I =1+1
GO TO 149

NPJCNV is N+J such that convergence is obtained. See Blanch

paper.
12 N=M+ 5
P = @.D0
NPJCNV = M
14 N = N+ §
Q=P
P = 0.D0
DO 15 J = NPJCNV, N
Ml = N + NPJCNV - J
15 P = 1.D0/(DFLOAT (M1)*A - P)
16 IF( DABS(P-Q) .GT. (l1.D-15)*DABS(P) ) GO TO 14
GHP = P

LP = .FALSE.
NPJM1 = NPJCNV - 1
IF( NPJCNV .EQ. NM ) GO TO 20

Evaluate G(NMAX) or H(NMAX) from G(NPJCNV). See Blanch paper.
DO 18 J = NM, NPJMI1
Ml = NM + NPJM1 - J
18 CALL GORHVU( M1, A, GHP, LP )
200 JN(NM) = GHP
GORH(NM) = LP
IF(NM .EQ. 2) GO TO 24
DO 22 J=3, NM
M1 = NM+3-J
MIM1 = M1-1
GHP = JN(M1)
LP = GORH(M1)
CALL GORHVU( M1M1l, A, GHP, LP )
JN(M1M1l) = GHP
22 GORH(M1M1l) = LP

24 UFL = .TRUE.
IF( GORH(2) ) GO TO 26
JN(2) = JN(1)*JIN(2)
GO TO 29
26 IF( DABS(J@) .GT. DABS(JN(l) ) ) GO TO 28
JN(2) = JN(1)/JIN(2)
GO TO 29
28 JUN(2) = JB/(IN(2)*A - 1.D0 )
29 IF( DABS(JN(2) ) .LT. 1.D-78) JN(2) = @.D#
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C Evaluate JN(VPl1l), VP1=3,...,NMAX. See Blanch paper.

C _______________________________________________________________________

DO 36 V = 2, NMM]1

VPl = V+1

IF( GORH(VP1l) ) GO TO 39
JN(VP1) = JN(V)*JIN(VP1)

GO TO 34
39 IF( DABS(JN(V-1) ) .GT. DABS(JN(V)) ) GO TO 32
JN(VP1) = JN(V)/JIN(VP1)
GO TO 34
32 JN(VP1l) = JN(V-1)/(JN(VP1l)*A*DFLOAT (V) - 1.D@)
C _______________________________________________________________________
C Abort possible later underflows.
C _______________________________________________________________________
34 IF( DABS(JN(VPl) ) .LT. 1.D-70 ) JN(VP1l) = 0.D0
36 CONTINUE
UFL = .FALSE.
RETURN )
C _______________________________________________________________________
C Treat the special case X=0.
C _______________________________________________________________________
44 P=0.D®
Jg = 1.D@

DO 45 v=1, NM
45 JN(V) = P

RETURN

END
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Subroutine HANKEL evaluates the Hankel functions HN1 for
argument X and for orders N from zero through NMAX. HANKEL is used
in ISPMOM to provide wvalues for SUMHJI. In the following,
HN1=J(n)+iY(n). The recurrence relation is used for the J’'s from
J(2) through J(K=X) and Blanch’s continued fraction method is used
for the J’'s from J(K=X) through J(NMAX) (see BESSEL). The recurrence
relation is used for all Y's from Y(2) through Y(NMAX). Should
overflow occur the resultant Y and all higher order Y’'s are set to
-1.D78. Due to internal array dimensioning NMAX must be 32 or
less (BESSEL was written to avoid this). JORH is the JN or HN1
return option: JORH = .TRUE.: Return the Hankel functions HN1;
JORH = .FALSE.: Return the Bessel functions JN and set YN to zero.
HO1 is the value of H@l. HN1l is an array of values of HN1l(X) for N
from one to NMAX. * is a label to which the calling program jumps
when either X or NMAX 1is 1less than zero. PNTOPT is the
overflow/underflow printing option:

PNTOPT=@: Print nothing; PNTOPT=1: Print complete statistics;
PNTOPT=2: Print one liner.
HANKEL is accurate to at least 12 decimal places. HANKEL calls
UNDRFL, OVERFL, H@1S, H11lS, and GORHVU.

SUBROUTINE HANKEL({( X, NMAX, JORH, H@1, HN1l, *, PNTOPT )
IMPLICIT REAL*8 (A-H, 0-2, $), INTEGER( I-N )
COMPLEX*16 DCMPLX, H@1, HN1(l ), H@1S, H1l1lS, HC
REAL*8 JN(33), ¥YN(33), GH(33), F(2)
INTEGER V, PNTOPT, PNTOP, VP1
LOGICAL GCRH(33), OBOY, YLOOP, LP, UFL, JORH, JORHS
EQUIVALENCE( HC, F )
EXTERNAL OVERFL, UNDRFL
COMMON/$1/ OBOY, YLOOP
COMMON/$2/ UFL
COMMON/$3/ PNTOP
OBOY = .FALSE.
YLOOP = .FALSE.
UFL = .FALSE.
DO 1 I =1, 33
1 GORH(I) = .FALSE.
NM = NMAX
NMP1 = NM+1
XX = X
JORHS JORH
PNTOP PNTOPT
IF( XX.LT. 9.D8 .OR. NM.LT. @ ) RETURN1
IF( XX .EQ. #.D@ ) GO TO 44
K = IDINT{ XX )
IF{ K .GT. NM ) K=NM

H@A1 = HP1S (XX)
HC = HA1

JN(1) = F(1)
YN(1) = F(2)
IF( NM .EQ. # ) RETURN
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C Evaluate H11l using Chebyshev polynomial expansion.
G e e e e e e e e e e e e e e e e e e o et et e e e o o o e
HN1 (1) = HI11S(XX)
HC = HN1 (1)
IN(2) = F(1)
YN(2) = F(2)

IF( NM .EQ. 1 ) RETURN
A = 2.DO/XX

KM1 = K-1

IF( KM1 .LT. 1 ) GO TO 4

C _______________________________________________________________________
C Evaluate the J's up to J(K=X) using the recurrence relation.
C _______________________________________________________________________
6 DO 7 vV =1, KM]
AV = DFLOAT( V )
7 JIN(V+2) = JN(V+1)*A*AV - JN(V)
4 IF( K .EQ. NM ) GO TO 32
Cmmr e e e e e e e e ==
C A maximum of 32 underflows may occur before program termination,
C _______________________________________________________________________
IF( PNTOP-1 ) 100, 102, 100
120 CALL ERRSET( 208, 32, -1, 1, UNDRFL )
GO TO 8
162 CALL ERRSET( 208, 32, 0, @, UNDRFL )
Cmmmrrer e e e e e e e e m e — =
C Evaluate the rest of the J s by Blanch s method.
C _______________________________________________________________________
8 J = IDINT( XX )
IF(J .LT. NM ) J = NM
I =2J
16 M =1
IF( A*DFLOAT(I) .GE. 2.5D80 ) GO TO 12
I =1+1
GO TO 190
Cmmmr e e e e e e e e e = ==
C NPJCNV is N+J such that convergence is obtained. See Blanch
C paper.
C _______________________________________________________________________
12 N=M+ 5
P = 0.D0
NPJCNV = M
14 N = N+ 5
Q=P
P = 0.D0
DO 15 J = NPJCNV, N
Ml = N + NPJCNV - J
15 P = 1.D@/ (DFLOAT (M1)*A - P)
16 IF( DABS(P-Q) .GT. (1.D-15)*DABS(P) ) GO TO 14
GHP = P

LP = .FALSE.
NPJM1 = NPJCNV - 1
IF( NPJCNV .EQ. NM ) GO TO 20
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C Evaluate G(NMAX) or H(NMAX) from G(NPJCNV). See Blanch paper.
DO 18 J = NM, NPJM1
Ml = NM + NPIJM1 - J
18 CALL GORHVU( M1, A, GHP, LP )

20 GH(NMPl) = GHP
GORH( NMP1 ) = LP
KP1 = K+1
KP2 = K+2

IF( KP2 .GT. NM ) GO TO 24

DO 22 J = KP2, NM

Ml = NM + KP2 - J

M1P1 = M1+l

M1M1 = M1-1

GHP = GH(M1Pl)

LP=GORH (M1P1)

CALL GORHVU( M1M1, A, GHP, LP )

GH(M1) = GHP \
22 GORH(M1) = LP
24 UFL = .TRUE.

DO 30 V = KP1l, NM

IF( V .LE. 1 ) GO TO 30

VPl = V+1
IF( GORH(VP1l) ) GO TO 26
JN( VPl ) = JN(V)*GH(VP1)
GO TO 29
26 IF( DABS(JN(V-1)) .GT. DABS( JN(V) ) ) GO TO 28
JN(VP1l) = JN(V)/GH(VP1)
GO TO 29
28 JN(VP1l) = JN(V-1)/(GH(VP1l)*A*DFLOAT(V) - 1.080 )

29 IF( DABS( JN(VP1l) ) .LT. 1.D-70 ) JN(VP1l) = @.D@
30 CONTINUE
32 UFL = .FALSE.

I1 =3

IF( JORHS ) GO TO 105

DO 183 J = 1, NMP1

193 ¥YN(J) = 0.D0O
H#1 = DCMPLX(JN(1l), ¥YN(1l) )
HN1 (1) = DCMPLX( JN(2), ¥YN(2) )
GO TO 440

1905 IF( PNTOP-1 ) 104, 106, 104

194 CALL ERRSET( 287, 32, -1, 1, OVERFL )
GO TO 33

1906 CALL ERRSET( 207, 32, @, @, OVERFL )

33 YLOOP = .TRUE.
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C Evaluate the Y s using the recurrence relation.
e e o 2 e e e o e

IF( OBOY ) GO TO 36

IF( DABS(YN(Il1) ) .GT. 1.D78 ) GO TO 36
34 CONTINUE

YLOOP = .FALSE.

GO TO 490
36 DO 38 J = Il, NMPI1
38 ¥YN(J) -1.D70

YLOOP .FALSE.

OBOY = .FALSE.

49 DO 42 J = 2, NM
JPl = J+1

42 HN1(J) = DCMPLX( JN(JP1l), ¥YN(JP1) )
RETURN

P=1.D0

Q = 0.D0

A = -1.D740

H@1 = DCMPLX( P, A )

DO 45 J =1, NM

45 HN1(J) = DCMPLX( Q, A )
RETURN

END
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Subroutine GORHVU is required as part of Blanch’s method given
in "SIAM Review", V. 6, no. 4, Oct, 1964, It is used in BESSEL and
HANKEL. For further details, see the Blanch paper.

SUBROUTINE GORHVU( X, A, GH, L )

REAL*8 GH, A, BK, YD, ZD, DABS, DFLOAT, Hl
INTEGER K

LOGICAL L

BK = A*DFLOAT (K)

IF(L) GO TO 19

YD = BK-GH

oEoNONe]

IF (DABS(BK) .GE. 2.D@ ) GO TO 1
IF( DABS(YD) .GT. 1.D@ ) GO TO 1
L = .TRUE.

GH = ¥YD

RETURN

l1 L = .FALSE.
GH = 1.D@/YD

RETURN \
12 ZD = BK*GH - 1.D@
H1 = GH
IF( DABS(ZD) .GE. DABS(GH) ) GO TO 100
L = .TRUE.
GH = zD/H1
RETURN
190 L = .FALSE.
GH = H1/7D
RETURN

END
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Subroutine UNDRFL is called when an underflow occurs. If an
under flow occurs when UFL is .TRUE., the result register will be set
to zero and program execution will continue. Otherwise, the program
will terminate. D is the result register. I is a dummy variable.
UNDRFL is usad in BESSEL, HANKEL, GTJN, SKS, SUMINC, and SUMHJI.

SUBROUTINE UNDRFL( D, I )
REAL*8 D

INTEGER PNTOPT

LOGICAL UFL

COMMON/$2/ UFL

COMMON/$3/ PNTOPT

IF( PNTOPT .GE. 2 ) PRINT 1

1 FORMAT( ~ °, 75X, ‘UNDERFLOW OCCURRED. RESULT REGISTER WAS SET TO
1 ZERO. ™ )

D = ¢.D¢

IF( UFL ) RETURN

CALL ERRSET( 208, 1, 9, 8 )

STOP \

END

Subroutine OVERFL is called when an overflow occurs. If an

overflow occurs when YLOOP is .TRUE., the result register will be
set to -1.D79, OBOY will be set to .TRUE., and program execution
will continue. Otherwise, the program will terminate. D is the
result register. I is a dummy variable. OVERFL is used in HANKEL.

SUBROUTINE OVERFL(D, I )
REAL*8 D

INTEGER PNTOPT

LOGICAL OBOY, YLOOP
COMMON/$1/ OBOY, YLOOP
COMMON/$3/ PNTOPT

OBOY = .TRUE.

IF( PNTOPT .GE. 2 ) PRINT 1

1 FORMAT( °~ °, 75X, "OVERFLOW OCCURRED. RESULT REGISTER WAS SET TO
1-1.p70.° )

D = -1.D79

IF( YLOOP ) RETURN

CALL ERRSET( 207, 1, 0, 90 )
STOP

END
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C Function H@1S evaluates the Hankel function H@1 for argument X.
C A Chebyshev polynomial expansion 1is wused for X less than 7 and
C another is used for X greater than 7. The coefficients are from
C Table 25 on page 331 of Volume II of Luke’s book, "The Special
C Functions and Their Approximations." The routine 1is <called by
C HANKEL and BESSEL.

C _____________________________________________________________________

COMPLEX FUNCTION H@1S*16 (X)
COMPLEX*16 DCMPLX, DIST
REAL*8 X, XX, DABS, A(l6), B(16), CR(16), CI(16), DSQRT, FOX,

1 OOSRTX, AGL, DLOG, RECT, IECT, XO08, X2, EAT, EBT, PIO4, R20PI,

2 TWOOPI, GAMMA, DSIN, DCOS
DATA PIO4/0.7853981633974483D0/, R20PI1/0.7978845608028654D0/,

1 TWOOPI/®.6366197723675813D0/, GAMMA/0.5772156649015329D0/

DATA A/-0.758D-15, 9.00041253D-10, -0.061943835D-10,0.78486963D-149,

1l -0.0002679253539D-5, 0.0076081635924D-5,-0.17619469097762D-5,

2 3.2460328821005D-5,-0.000460626166206275D0,0.0048191800694676084D0

3,-0.034893769411408885D0,0.158067102332097261D49,

4 -0.37009499387264977D9,0.26517861320333680D0,

5 -0.00872344235285222D0, ©.15772797147489911D0 /

DATA B/1.58D-15, -84.42D-15,0.03882867D-10,-1.5258285D-14,
5¢.5105437D-10,-0.013845718123D-5,0.307649328813D-5,
-5.3925¢7972293D-5,71.911740375230D-5,-0.00693228629152318D4,

0.04462137954066928D9, -0.16563598171365041D9,
0.23425274610902180D47, 9.198608563470255416D@,
-0.27511813304351879D49, -0.02150511144965755D0 /

DATA CR/0.59D-15, -3.61D-15, 8.73D-15, 41.91D-15, -0.0655909D-140,

1 ©¢.9253535D-10,0.0323797D-10, -1.3915619D-10,9.2676248D-10,

2 14.5492807D-10, -0.009077910153D-5, 0.069154234914D-5,

3 9.8511232210656D-5,-0.00031878987806189D0, -0.00133842854997185D0

4 , 9.99898808985896515D0 /

DATA CI/0.46D-15, ©#.75D-15, -16.77D-15, 92.31D-15, -0.0012255D-10,

1 -0.0230489D-10, ©.2169571D-10, -0.6062738D-10, -6.8334751D-10,

2 96.4642133D-10, -0.002724495341D-5, -0.085180664442D-5,

3 1.365557049035D-5, 9.649418499342D-5,

4 -0.01224949628125947D9, -0.01233152057854414D9 /

XX = DABS(X)

IF( XX .LT. 7.D@ ) GO TO 1

OOSRTX = 1.D@/DSQRT( XX )

AGL = XX - PIO4

DIST = OOSRTX*R20PI*DCMPLX( DCOS (AGL), DSIN(AGL) )
FOX = 5.D@/XX

(G20~ VS I SO R

CALL EATSTR( FOX, 15, CR, RECT )
CALL EATSTR( FOX, 15, CI, IECT )
H@1S = DCMPLX( RECT, IECT ) *DIST
RETURN

1l IF( XX .EQ. #.DG ) GO TO 2
X08 = 0.125D@*XX
X2 = X08*X08



217

Computer Program for -polarization Half-Plane Current. Page

OO0O0O000n

CALL EATSTR( X2, 15, A, EAT )

CALL EATSTR( X2, 15, B, EBT )

H@1S = DCMPLX( EAT, TWOOPI* (GAMMA+DLOG(9.5D@*XX))*EAT + EBT )
RETURN

2 H@P1lS = DCMPLX( 1.D9, -1.D70 )
RETURN
END

Function H11lS evaluates the Hankel function H1ll for argument X.
A Chebyshev polynomial expansion 1is wused for X less than 7 and
another is used for X greater than 7. The coefficients are from
Table 26 on pages 332 and 333 of Volume II of Luke’s book, "The
Special Functions and Their Approximations." The routine is called
by HANKEL and BESSEL.

COMPLEX FUNCTION H11S%*16 (X)

COMPLEX*16 DCMPLX, DIST

REAL*8 X, XX, DABS, DSQRT, DLOG, X08, DR(16), DI(16), A(1l6),

1 C(16), OOSRTX, FOX, EAT, REDT, IEDT, ECT, PIO4, R20PI, TWOOPI,
2 GAMMA, TPIO4, AGL, DSIN, DCOS

DATA PIO4/0.7853981633974483D0/,R20P1/0.7978845608028654D0/,

1 TWOOPI/0.6366197723675813D8/, GAMMA/0.5772156649015329D0/
DATA A /-0.096D-15, 5.59D-15, -0.0028317D-10,0.1235175D-10,

1 -4.5857003D-10, ©0.001427732438D-5, -0.0366130885523D-5,

2 0.756263022969D-5, -12.227868505432D-5,0.00148991289666763D40,
3 -0.01296762731173517D0, ©0.07426679621678703D0,

4 -0.24186740844740748D3, 0.31327508236156718D4,

5 0.04809646915823037D49, 0.85245819033465648D90 /

DATA C/ 0.20D-15, -0.0001157D-10, 0.0057261D-10, -0.2434327D-10,
1 8.7803011D-10, -0.002645073717D-5, 0.065284795235D-5,

2 -1.288585329924D-5, 19.706230270154D-5, -0.00223561929448509D0,
3 0.01763670300316313D8, -0.08667169705694852D0,

4 0.20664454101749051D0, -0.02271924442841773D40,

5 -0.44444714763055806D49, -0.04017294654441407D0 /

DATA DR/ -0.63D-15, 3.97D-15,-10.132D-15, -43.161D-15,

l 90.0061781D-10, -0.0293217D-10, -0.0283045D-10, 1.5763723D-19,
2 -11.1490594D-19, -12.9439892D-10, 0.011103267712D-5,

3 -0.094690138239D-5, -1.117946189540D-5, 54.321648750801D-5,

4 0.00225557284656117D4, 1.00170223485382100D9 /
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1

DATA DI/ -6.52D-15, -0.79D-15, 18.12D-15, -133.38D-15,
0.0015619D-10, ©.0249389D-10, -0.2475278D-10,0.75476087D-10,

2 7.5973309D-10, -0.001162872327D-5,9.003830526171D-5,

3
4

1

2

0.107001405738D-5, -1.985129468759D-5,-13,726323820194D-5,
0.03714532247980768D0, ©B.03726171500053755D0 /

TPIO4 = 3.D@*PIO4

XX = DABS (X)

IF( XX .LT. 7.D@ ) GO TO 1

OOSRTX = 1.D@/DSQRT( XX )

AGL = XX - TPIO4

DIST = OOSRTX*R20PI*DCMPLX( DCOS(AGL), DSIN(AGL) )

FOX = 5.D@/XX

CALL EATSTR( FOX, 15, DR, REDT )
CALL EATSTR( FOX, 15, DI, IEDT )
H11lS = DIST*DCMPLX( REDT, IEDT )
RETURN

IF( XX .EQ. 9.D@ ) GO TO 2

X08 = XX*0.125D0

CALL EAT2P1( XO8, 15, A, EAT )

CALL EAT2P1( XO8, 15, C, ECT )

H11S = DCMPLX( EAT, TWOOPI* (GAMMA+DLOG (J.5D0*XX)) *EAT-TWOOPI/XX+
ECT )

RETURN

H11S = DCMPLX( 6.D@, -1.D780 )
RETURN
END
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Subroutine EAT2P1 evaluates the Chebyshev series: Y = Sum of
A(kK)T(2k+1) (X) over k from zero to N for argument X. "E" in EAT2P1
denotes Sigma(Sum of). N is the upper index of the summation. The
index goes from zero to N. N+1 coefficients are required. A is the
coefficient vector of length N+1 written in REVERSE order: A(N),
A(N-1),...,A(0). Y is the result of the sum. The recurrence
algorithm is given on page 329 of Volume I of Luke’s book, "The
Special Functions and Their Approximations."

SUBROUTINE EAT2P1( X, N, A, Y )
REAL*8 X, A(1l), Y, U, PA, PB, PC, XX
INTEGER N, I, NN

XX = X
U = 4.,DP*XX*XX -2.D0
PB = 0.D0
PA = 0.DO
NN = N+1
DO 1 I =1, NN
PC = U*PB - PA + A(I) !
PA = PB
1 PB = PC
Y = XX*(PB-PA)
RETURN
END
Subroutine EATSTR evaluates the Chebyshev series: Y = Sum of

A(k)T*(k) (X) over k from zero to N with argument X, or the Chebyshev
series: Y = Sum of A(K)T(2k) (X) over k from zero to N for argument
X when the routine is called with argument X*X (X-sguared) instead
of X. N is the upper index of summation. The index goes from zero
to N. N+1 coefficients are required. A is the coefficient vector
of length N+1 written in REVERSE order: A(N), A(N-1),...,A(0). Y
is the result of the sum. The recurrence algorithm is given on page
329 of vVolume I of Luke’s book, "The Special Functions and Their
Approximations.,"

SUBROUTINE EATSTR( X, N, A, Y )
REAL*8 X, A(l1), Y, U, PA, PB, PC, XX
INTEGER N, I, NN

XX = X
U = 4.DO*XX -2.D0
PB = 0.D0
PA = 0.D0
NN = N
DO 1 I = 1, NN
PC = U*PB - PA + A(I)
PA = PB
1 PB = BC
Y = 2.D@*XX*PB - (PA+PB)
RETURN

END
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Subroutine LTPLZ finds the solution wvector VOUT for an
almost-Toeplitz matrix whose first (Left) column is different from
what it would be if the matrix were completely Toeplitz. ZTAU 1is
the input vector of values for the left column. TAU is the input
vector of the values that the left-most column would take on if the
matrix were completely Toeplitz. If T 1is the Toeplitz matrix
corresponding to TAU, and if @2TAM and TAM are matrices whose
left-most columns are 2TAU and TAU, respectively, and whose other
columns are all zero, then the matrix equation may be written as

(T + (2TAM - TAM) )VOUT = VIN.

21, A, and Al are working storage vectors and are each of length N2Z.
NZ 1is the order of the matrix system. VIN is a one-dimensional
vector of length (NZ*MM) containing the MM concatenated excitation
vectors. VOUT 1is a one-dimensional vector of 1length (NZ*MM)
containing the MM concatenated solution vectors. MM is the number
of excitation and solution vectors. XNORM is the infinite norm of
the inverse of the Toeplitz matrix T(not of T+ (Z2TAM-TAM)). IER 1is
an error code returned: IER=0 means no error; IER=N means an error
occurred on the N'th iteration of working vector A. Both TAU and
2TAU are destroyed. LTPLZ was modified from TPLZ which was written
by Chuck Klein. The basic Toeplitz algorithm is due to D. H.
Preis, IEEE Transactions on Antennas and Propagation, V. AP-240,
1972, Page 204.

SUBROUTINE LTPLZ (2TAU,TAU,Z1,A,Al1,NZ,VIN,VOUT,MM,XNORM,IER)
IMPLICIT COMPLEX*16 (A-H,0-2)

COMPLEX*16 2TAU(NZ) ,TAU(NZ),21(1),A(1),A1(1),VIN(1l),VOUT(1)
COMPLEX*16 ONE/(1D@,0D@)/,ZERO/(0D@,0D0)/

REAL*8 ONNE/1D@/,ZRRO/GDO /

REAL*8 XNM,XNORM

Take the difference between ZTAU and TAU and store the result in
ZTAU.

DO 108 II=1,N2

1900 Z2TAU(II) = 2ZTAU(II) - TAU(II)

N=NZ-1
IER=0

TAU1=TAU (1)
DO 2008 I1I=1,N

2090 TAU(II)=TAU(II+1)/TAUl

Calculate the iterative variables to obtain A(N) and ALMDA.

ALMDA=0ONE - TAU(1)*TAU(1)
A(1)=-TAU(1)
I=2
1 KK=I-1
ALPHA=ZERO
DO 2 M=1,KK
LL=I-M

2 ALPHA=ALPHA+A (M) *TAU(LL)
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54
C
C
C
C

50
C
C
C

ALPHA=- (ALPHA+TAU(I))
IF ( CDABS (ALPHA) .EQ. #.D@) GO TO 15
COEF=ALPHA/ALMDA
ALMDA=ALMDA-COEF*ALPHA
DO’ 3 J=1,KK

L=I-J

Al (J)=A(J)+COEF*A (L)
DO 7 J=1,KK
A(J)=Al(J)

A(I)=COEF

IF (I .GE. N) GO TO 5
I=I+1

GO TO 1

NH=(NZ+1) /2

FAC=ALMDA*TAUl

XNORM=ZRRO \
NP=NZ+1

DO 51 I=1,NH

XNM=ZRRO

IF(I .NE. 1) GO TO 52

Al(l)= ONE/FAC
XNM=CDABS (Al (1))

DO 53 J=2,NZ
Al(J)=A(J-1) /FAC
XNM=CDABS (Al (J) ) +XNM

GO TO 54

XNM=ZRRO

Cl=A(I-1)

C2=A(NP-1I)

DO 55 JJ=1,N

J=NP-JJ

Al (J)=A1(J-1)+(C1*A(J-1)-C2*A(NP~-J))/FAC
XNM=CDABS (Al (J) ) +XNM
Al(1)=A(I-1)/FAC
XNM=XNM+CDABS (Al (1))

IF (XNM .GT. XNORM) XNORM=XNM

Obtain Zl1 from ZTAU  and Al by matrix multiplication.
(2TAU° = ZTAU - TAU).

V=ZERO

V1l = ZERO

DO 64 J=1,NZ

V2 = ZTAU(J)

V = V+V2*Al(J)

V1l = V1+V2*Al (NP-J)
Z1(I)=Vv

Z1 (NP-I) = V1

Evaluate VOUT due to the completely Toeplitz matrix T for each
input excitation vector.

221
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DO 56 II=1,MM
ID=(II-1)*N2Z
V=2ERO

V1=ZERO

DO 57 J=1,NZ
V2=VIN (ID+J)
V=V+V2*Al(J)
V1=V1+V2*Al (NP-J)
VOUT(ID+I )=V
VOUT (ID+NP-I )=Vl
CONTINUE

-polarization Half-Plane Current.
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Page

Modify VOUT as reauired to arrive at the solution for the
almost-Toeplitz matrix using Z1 calculated above,

57
56
51
C
C

62

15
700

DO 62 II =1,

ID = (II-1)*N2Z

V = VOUT(ID+1)/(ONE+2Z1 (1) )

VOUT (ID+1) = V \
DO 62 C=2, NZ

VOUT (ID+J) = VOUT(ID+J) - (21 (J)*V)
RETURN

PRINT 700

FORMAT ('@ °,75X, "ERROR HAS OCCURRED.
1G. /)

IER=1I

RETURN

END

MATRIX IS NOT STRONGLY NONSIN
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Subroutine PNTOWT calculates the "exact" current (IE-IPO) and
compares it with the approximate solution obtained by the method of
moments. TAD, NSIZE, NCASES, KZ, RHS, RESULT, ROOT, and H are
inputs. IEMPO 1is a dimensioned array of length NSIZE which is
filled with the "exact" values of (IE-IPO) for each match point KZ.
RHS, TAD, NSIZE, NCASES, and KZ are the same as RHS, TAD, NSIZE, NC,
and KZ as described in ISPMOM. RESULT 1is an array of length
NCASES*NSIZE which contains the values of (IE-IPO) obtained by the
method of moments. ROOT 1is a 1logical variable which must be
.TRUE. for PNTOWT to handle the hybrid case and .FALSE. to handle
the pulse case. H 1is the half-subsection width. PNTOWT calls
XIEMPO and SEP directly.

SUBROUTINE PNTOWT (TAD,NSIZE,NCASES,KZ,IEMPO,RHS,RESULT,ROOT,H)
COMPLEX*16 IEMPO(1l) ,EXACT,ANS,DIFF,RESULT(1) ,RHS(1) ,COEFF,SP(20)
REAL*8 KZ (1), TAD(l), H, Z(20¢), DFLOAT, DSQRT, THETAD, DELZ, AX(4)
1, AA(4), ZM(3,4)

INTEGER NCASES, NSIZE, J, K, IC(4)/° RE=", 1IM=", MAG=", 'AGL="/,
1 JJ, KK, OFFSET \

LOGICAL ROOT

DO 3 J=1, NCASES

OFFSET = (J-1 )*NSIZE

THETAD = TAD(J)

Obtain array of "exact" (IE-IPO); store in IEMPO.

CALL XIEMPO( NSIZE, KZ, THETAD, IEMPO )

Write results in appropriate disk file: ROOT=.TRUE. for hybrid
expansion; ROOT=.FALSE. for pulse expansion.

IF( ROOT ) GO TO 21
WRITE(22) THETAD, NSIZE, H, (KZ(K), K=1, NSIZE),
1 (RESULT (OFFSET+K) ,K=1,NSIZE )
GO TO 29
21 WRITE(21) THETAD, H, (KZ(K),K=1,NSIZE), (IEMPO(K) ,hK=1,NSIZE)
1 , {(RHS(OFFSET+K) ,K=1,NSIZE), ({(RESULT{OFFSET+K),K=1,NSIZE)
2¢ PRINT 5, THETAD
5 FQRMATg’l’,’T@ETAD=:,F9.24/T4,’Kz’,T18,’EXACT’,T38,’ANS’,T55,
1 ‘DIFF’°, T76, EXACT ,T96, 'ANS ,T113, ‘DIFF’ )

DO 2 K=1, NSIZE
EXACT = IEMPO (K)
ANS = RESULT{( OFFSET + K)

Separate EXACT, ANS into real part, imaginary part, magnitude and
phase, A(1l), A(2), A(3), and A(4), respectively.

CALL SEP{ EXACT, AX )
CALL SEP( ANS, AA )



Computer Program for E-polarization Half-Plane Current. Page 35

DO 10 I=1, 4
ZM(1,I) = AX(I)
ZM(2, I) = AA(I)
10 ZM(3, I) = AX(I) - AA(I)
2 PRINT 4, KZ(K), (IC(I),(zM(JJ,I),JJ=1,3),I=1,4), RHS(DFFSET+X)
4 FORMAT(  °,T2,0PF7.4,T9,2(A4, <",1PD17.14,°/ ,D17.14, > ,D17.180,
1 2X)/19,A4, <" ,D17.10,°/°,D17.10, > ,D17.10,2X,A4, < ,8PF17.10,

-
.

2 '/",F17.198,">",F17.10/T71, "RHS=(",1PD23.15, ", ,1X,D23.15, ) ;" )

C _______________________________________________________________________
C Print out selected values across the 1/SQRT subsection, if

c applicable,

C _______________________________________________________________________

IF( .NOT. ROOT ) GO TO 3
COEFF = RESULT( OFFSET + 1 )
PRINT 12 , COEFF
12 FORMAT('®9°,5X, "COEFF=(’,1PD23.15,°, ,2X,D23.15,7) )
DELZ = H/20.D0
DO 7 JJ=1, 20
7 Z(JJ) = DELZ*DFLOAT (JJ)
CALL XYEMPO{20, %, THETAD, SP )
DO 6 JJ = 1, 20
EXACT = SP(JJ)
ANS = COEFF/DSQRT(Z (JJ))
CALL SEP( EXACT, AX )
CALL SEP( ANS, AA )

DO 8 K=1, 4

ZM(1,K) = AX(K)

ZM(2,K) = AA(K)
8 ZM(3,K) = AX(K) - AA(K)
6 PRINT 4, Z(JJ), (IC(I),(ZM(K,I),K=1,3),I=1,4)
3 CONTINUE

RETURN

END
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Subroutine XIEMPO calculates the "exact" half-plane current,
(IE-IPO), from the well-known analytic result, for NSIZE points. KZ
is an array of length NSIZE containing the values of argument for
which (IE-IPO) is to be found. THETAD is the angle of incidence in
degrees. IEMPO is an array of length NSIZE containing the values of
(IE-IPO) corresponding to arguments KZ., XIEMPO calls FRESNL and is
called by PNTOWT,.

SUBROUTINE XIEMPO( NSIZE, KZ, THETAD, IEMPO )

COMPLEX*16 DCMPLX, IEMPO(l), FRESNL, IEIKZ, SEKC

REAL*8 Kz (l), X, THETAD, THETA, TAO2, DCOS, DSIN, STA, STAZ2 ,
1 cCTAa2, CTA, TSRX,PI, PIO4, SRTPI, DSQRT, XP4, XCP4, CTA2SQ, XC
DATA PI/3.14159265358979323846D0/,
1SRTPI/1.77245385090551602730D08/,P104/0.78539816339744830962D0/
INTEGER NSIZE, NS, I

THETA = (THETAD/18@.D@)*PI

TAO2 = THETA/2.D@

cTA DCOS( THETA )

STA DSIN( THETA ) \

IF( THETAD .EQ. 180.D@ ) STA = (.D@

STA2 = DSIN( TAO2 )

CTA2 = DCOS( TAOZ )

IF( THETAD .EQ. 184.D@ ) CTA2 = $.D@

CTA25Q = CTA2*CTA2

DO 1 I =1, NSIZE

X = KZ(I)

IF( X .NE. 0.D8 ) GO TO 2
IEMPO(I) = DCMPLX( 1.D74, 1.D70 )
GO TO 1

2 TSRX = DSQRT(2.D@*X)
XP4 = X + PIO4
XC = X*CTA
XCP4 = XC + PIO4
IEIKZ = STA2*DCMPLX (DCOS(XP4), DSIN(XP4))/TSRX
SEKC = STA*DCMPLX (DCOS (XCP4) ,-DSIN(XCP4) )

IEMPO(I)=(4.D@/SRTPI)* (IEIKZ+SEKC*FRESNL (2,D@*X*CTA2SQ)) - 2.D@*
1 STA*DCMPLX (DCOS (XC) ,-DSIN (XC))
1 CONTINUE

RETURN

END
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C Function FRESNL evaluates a form of the Fresnel Integral for
C argument X, specifically, the integral from zero to SQRT(X) of
C exp(it**2)dt. A Chebyshev polynomial expansion is used for X less
C than 7 and another is used for X greater than 7. The coefficients
C are from Table 24, page 328 and 329 of vVolume II of Luke’s book,
C "The Special Functions and Their Approximations." The coefficients
C given here are simply those in the book divided by two. FRESNL is
C called by XIEMPO and by a subprogram used in finding (IH-Ipo).
C _____________________________________________________________________
COMPLEX FUNCTION FRESNL*16 (X)
COMPLEX*16 DCMPLX
REAL*8 X, DSQRT, DSIN, DCOS, RPIO2, A(16), B(1l6), RC(25), IC(25),
1 Y(2), XX, DABS, X08, FOX, X08SQ
DATA RPIO2/1.253314137315500825121D8/
DATA A/ -0.00000000000000008751D9, 0.00000000000000493266D0,
1 -0.00000000000024172016D90, 0.00000000001018666274D0,
2 -0.00000000036450818593D47, 0.00000001090829227466D0,
3 -0.00000026804669944621D7, 0.00000528698828191630DF,
4 -0.00008132488809443773D47, 0.000939277117199110089D0,
5 -0.00773262242230690979D9, 0.04208022660438467689D7,
6 -0.13486655159193555514D4, 0.21644099989863326527D49,
7 -0.21567773773830089656D0, 0.38217569332093000094D08/
DATA B/ -0.00000000000000001109D9, 0.00000000000000066819D0,
1 -0.00000000000003516208D47, 0.00000000000160024212D9,
2 -0.00000000006224915109D9, 0.00000000204124865848D0,
3 -0.00000005549420920434D9, 0.00000122560374961649D9,
4 -0.00002143535766051002D49, 0.00028727475988448683D07,
5 -0.00282281738566095449D9, 7.01911127889316504347D9,
6 -0.08124744577254783707D9, #.18808586321671828312D0,
7 -0.21172255792852666772D8, 0.31520702157285269620D8/
DATA RC/ 0.00000000000000002612D3, 0.00000000000000003239D9,
1 -0.00000000000000037573D9, 0.00000000000000155347D9,
2 -0.00000000000000429646D0, 0.00000000000000698781D0,
3 0.00000000000002634657D4, -0.00000000000010357825D0,
4 0.00000000000047315709D49, -0.00000000000135101335D0,
5 0.00000000000169738230D7, 0.00000000000764304404D0,
6 -0.00000000006578827233D9, 0.00000000026775038355D49,
7 -0.00000000054407240611D9, -0.00000000133275825051D0,
8 0.00000001887764024651D9, -0.00000009382910042642D0,
9 0.00000015767650161726D0, 0.00000174661432988653D0,
/ -0.00001956652043150792D47, 0.00007326700129853392D0,
A #.00087714356982572662D4, -0.02249606510061970698D9,
B -0.02327889936875822803D40
DATA IC/ -0.00000000000000805898D8, 2.00000000000000018144D9,
1 -0.000000000000060038887D47, 0.00000000000000028479D0,
2 0.00000000000000201778D9, -0.00000000000001275308D7,
3 2.00000000000004503197D49, -0.00000000000010204942D0,
4 0.000000000000085356182D9, 0.00000000000085821900D@,
5 -0.00000000000526846515D0, 0.00000000001821160947D0,
6 -0.00000000003153985690D49, -0.00000000008238645529D9,
7 P.00000000098311841633D4F, -0.00000000454539864633D0,
8 0.00000000953974378644D4, 0.00000003754635868605D0,
9 -0.00000049952763318406D4, 0.00000244184087696664D7,
/ 0.00000053953449379317D0, -0.000133064747632362367D9,
A #.00124137141155653017D0, 0.00609175491573949873D49,

226
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B -0.49528023968674877433D8 /

XX = DABS(X)
IF( XX .LT. 7.D@ ) GO TO 1
FOX = 5.D@/XX

CALL EATSTR( FOX, 24, RC, Y(1) )
CALL EATSTR( FOX, 24, IC, Y(2) )
FRESNL = DCMPLX(@.5D@,0.5D@)*RPIO2+DCMPLX (Y (1) ,Y(2))*
DCMPLX ( DCOS (XX) ,DSIN (XX))/DSQRT (XX)
RETURN
X08 = XX/8.D0
X08SQ = X08*XO08

CALL EATSTR( X08SQ, 15, &, Y(1) )

CALL EAT2P1( X08, 15, B, Y(2) )

FRESNL = DCMPLX( Y(1l), Y(2) ) *DSQRT(XX)
RETURN

END
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Subroutine SEP is used to separate C, a COMPLEX*16 variable,

SUBROUTINE SEP(C, A )

COMPLEX*16 C, CC

REAL*8 C2(2), A(4), CDABS, O80OPI,PI, DATAN2
DATA PI/3.14159265358979323846D3/
EQUIVALENCE (CC,C2)

O800PI = 180.D@/PI

cc=C

A(l) = C2(1)

A(2) = C2(2)

A(3) = CDABS(CC)

A(4) = OBPOPI*DATAN2( C2(2), C2(1l) )
RETURN

into its real part, imaginary part, magnitude and phase. These
results are stored in A(l) through A(4), respectively. A is
array of length 4 and of type REAL*8. SEP is used in PNTOWT.

an
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Computer Program for H-polarization Half-Plane Current,

These routines were written by
Donald Farness Hanson, June, 1975.

The following MAIN program evaluates the H-polarization
(H-vector parallel to the edge) half-plane current minus the
physical optics current, (IH-Ipo), from the values of (IE-IPO) found
previously by the method of moments. For each point along the
half-plane, two numerical integrations must be performed. For the
first, the values of (IE-IPO) must be known for angle of incidence
THETAD=90 degrees and for the second, (IE-IPO) must be known for the
angle of incidence for which (IH-Ipo) is to be found. The details
of this method are presented elsewhere in this work. MAIN reads
RESULT vectors written on the disk by the moment method program for
(IE-IPO) and operates upon them in the appropriate fashion. Results
are wriuvten on the disk for THETAD=45, 90, 135, and 180 degrees
respectively. Results due to the hybrid expansion are read from
disk file 21 and those due to the pulse-everywhere expansion are
read from disk file 22, The approximate results for (IH-Ipo) due to
the numerical integrations are stored in IHMPOA by SUBROUTINE AIHMPO
and the "exact" results due to the analytic expression are stored in
IHMPOX by SUBROUTINE XIHMPO. MAIN calls YARRAY, AIHMPO, XIHMPO, and
PNTUUT directly. A list of the subprograms called by each of these
routines 1is given among the respective routine descriptions. This
routine requires 132 seconds of IBM 360/75 execution time, and 9
seconds of compile time.

COMPLEX*16 DCMPLX, A(200), B1(200), B2(200), EIKZ(200), IHMPOA(499
1 ), IHMPOX(499)
REAL*8 Y(499), KZ(200), H, THETAD, TA(2), DCOS, DSIN
INTEGER I, J, NPTS, NSIZE
LOGICAL HYORPS
NSIZE = 200
NPTS = 499
Read hybrid expansion RESULT arrays for 45 and 90 degrees into A
and Bl, respectively.
READ(21) TA(l1), H, KZ, A, A, A
READ(21) TA(2), H, KZ, Bl, Bl, Bl
Set up an array Y of points at which to evaluate the current
(IH-IpoO) .

CALL YARRAY( NPTS, KZ, NSIZE, H, Y )

WRITE (25) NPTS, H, Y
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G e e e e o e e i e o n t  t e o e e e o o i A i e o T e o i e 2
C Fill an array with often used numbers to make the program more
C efficient.
G e e e e
DO 1 I=1, NSIZE
1 EIKZ(I) = DCMPLX( DCOS(KZ(I) ), DSIN( KZ(I) ) )
THETAD = TA(1l)
HYORPS = .TRUE.
Crm e e e e e e e e et
C Evaluate the current (IH-Ipo) for 45 degrees using the hybrid
C expansion.,
C _______________________________________________________________ R
CALL ATIHMPO( NPTS, Y, A, Bl, KZ, EIKZ, NSIZE, H, THETAD, HYORPS,
1 TIHMPOA )
CALL XTHMPO( NPTS, Y, THETAD, IHMPOX )
C o o e e e
C Compare with "exact."
C _______________________________________________________________________
CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYYORPS )
C _______________________________________________________________________
C Read pulse-everywhere expansion RESULT arrays for 45 and 90
C degrees into A and B2, respectively.
C ________________ -t - — ————— - M o i o o o o o  y — — ———— — —————— ———— —— o —
READ(22) TA(l), NSIZE, H, KZ, A
READ(22) TA(2), NSIZE, H, KZ, B2
HYORPS = ,FALSE.
C _______________________________________________________________________
C Evaluate the current (IH-Ipo) for 45 degrees using
C pulse-everywhere expansion.,
C _______________________________________________________________________
CALL AIHMPO( NPTS, Y, A, B2, KZ, EIKZ, NSIZE, H, THETAD, HYORPS,
1 IHMPOA )
C _______________________________________________________________________
C Compare with "exact."
C _______________________________________________________________________
CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS )
HYORPS = .TRUE.
C _______________________________________________________________________
C Read Bl into A.
C _______________________________________________________________________
DO 2 I=1, NSIZE
2 A(I) = B1l(I)
THETAD = TA(2)
C _______________________________________________________________________
C Calculate the current (IH-Ipo) for 90 degrees using the hybrid
C expansion.
C _______________________________________________________________________
CALL ATIHMPO( NPTS, Y, A, Bl, KZ, EIKZ, NSIZE, H, THETAD, HYORPS,
1 IHMPOA )
CALL XIHMPO( NPTS, Y, THETAD, IHMPOX )
CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS )
HYORPS = .FALSE.
C _______________________________________________________________________
C Read B2 into A.
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DO 3 I=1, NSIZE
3 A(I) = B2(I)
THETAD = TA(2)

G m o e e e e
c Calculate the current (IH-Ipo) for 9@ degrees using the
C pulse-everywhere expansion.
C _______________________________________________________________________
CALI, ATHMPO(NPTS, Y, A, B2, KZ, EIKZ, NSIZE, H, THETAD, HYORPS,
1 IHMPOA )
CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS )
DO 4 J=3, 4
HYORPS = .TRUE.
C ___________________________________ o o o o o o o s i o i i i e i e i i i o o
C Read hybrid expansion RESULT array for 135(J=3) and 180 (J=4)
C degrees and calculate the current (IH-Ipo).
C _______________ r o o o i 2 i i —— . . . — - A S - i i oy S L ——— - — o —
READ(21) THETAD, H, KZ, A, A, A
CALL AIHMPO( NPTS, Y, A, Bl, KZ, EIXZ, NSIZE, H, THETAD, HYORPS,
1 \ IHMPOA )
CALL XIHMPO( NPTS, Y, THETAD, THMPOX )
CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS )
HYORPS = .FALSE.
C ________________________________________________________________________
C Read pulse-everywhere expansion RESULT array for 135(J=3) and
C 180 (J=4) degrees and calculate the current (IH-Ipo).
C _______________________________________________________________________

READ(22) THETAD, NSIZE, H, KZ, A
CALL AIHMPO( NPTS, Y, A, B2, KZ, EIKZ, NSIZE, H, THETAD, HYORPS,
1 IHMPOA )
CALL PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS )
4 CONTINUE
STOP
END
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Subroutine YARRAY generates the points at which it 1is desired
to calculate the current (IH-Ipo). NPTS is used here to dimension
array Y only; otherwise, it is not used., KZ is the array of match
points that was used in the method of moment solution for (IE-IPO).
H is the half subsection width (H=0.05) and Y is the output array of
points. One hundred points are egually spaced H/1080 apart within
the interval (@:H) and 399 points are equally spaced H apart on the
interval (H:19.95). These points were chosen to provide the details
of the current near the edge as well as the general form away from
the edge.

SUBROUTINE YARRAY( NPTS, KZ, NSIZE, H, Y )
INTEGER NPTS, NSIZE

REAL*8 KZ(NSIZE), H, Y(NPTS), DZ, DFLOAT
INTEGER I, OFFSET, J

Y(1) = Kz (1)

DZ = H/100.D9

DO 1 I=1, 100
1 Y(I+1l) = DFLOAT(I)*DZ
OFFSET = 98

DO 2 I=2, NSIZE
J = OFFSET + I + I

Y(J) = Kz(I)
2 Y(J+1) = Kz(I) + H
RETURN

END
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Subroutine AIHMPO calculates the current (IH-Ipo) at the NPTS
points contained in array YVALU by the Green’s function method
applied to (IE-IPO). A and B are arrays of values of (IE-IPO) for
angles of incidence THETAD and 90 degrees, respectively. KZ is the
array of match points used in obtaining A and B. EIKZ is an array
of wvalues of exp(iKZ) which is used to increase program efficiency
by calculating the numbers once and storing them for later use.
Arrays A, B, KZ, and EIKZ are all of length NSIZE. H is the
subsection half-width that was used for (IE-IPO). HYORPS (HYbrid OR
PulSe) is a logical variable which is .TRUE. when the A and B arrays
correspond to the hybrid expansion for (IE-IPO) and 1is .FALSE. for
the pulse-everywhere expansion. IHMPOA is the output array of
(IH-Ipo) wvalues and is of 1length NPTS. AIHMPO calls either
IFGHP (pulse) or IFGHSH (hybrid) . The "exact" wvalue of the
consistency constant is used for convenience.

SUBROUTINE AIHMPO( NPTS, YVALU, A, B, KZ, EIKZ, NSIZE, H, THETAD,
1 HYORPS, IHMPOA )

INTEGER NPTS, NSIZE \

COMPLEX*16 DCMPLX, A(NSIZE), B(NSIZE), EIKZ(NSIZE), IHMPOA(NPTS)
1, HSUME, HSUMS, GSUME, GSUMS, ITIMES, EIY

REAL*8 H, THETAD, KZ(NSIZE), YVALU(NPTS), DSIN, DCOS,DSQRT, STA,
1 CTA2, PI/3.14159265358979323846D9/, THETA, SY, CY, Y, SRT2

INTEGER I

LOGICAL HYORPS

SRT2 = DSQRT( 2.D@ )

THETA = (THETAD/18@.D@)*PI

STA = DSIN( THETA )

CTA2 = DCOS( THETA/2.D@ )

IF( THETAD .EQ. 180.D9 ) CTA2 = @.D@

DO 2 I=1, NPTS

Y = YVALU(I)

SY DSIN(Y)

Cy DCOS (Y)

EIY = DCMPLX( CY, SY )

IF( HYORPS ) GO TO 1

CALL IFGHP(Y, A, B, KZ,EIKZ,NSIZE,H, GSUME,GSUMS, HSUME,HSUMS)

GO TO 2
1 CALL IFGHSH(Y,A,B,KZ, EIKZ, NSIZE, H, GSUME, GSUMS, HSUME, HSUMS)
2 IHMPOA(I)=EIY* (SRT2*CTA2*ITIMES (HSUME)+STA*GSUME-2.D@)

1 + SY*(SRT2*CTA2*ITIMES (HSUMS)+STA*GSUMS)

RETURN

END
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Subroutine IFGHSH and entry subroutine IFGHP evaluate four
numerical integrations that are reguired by AIHMPO to evaluate the
current (IH-Ipo) from the current (IE-IPO). The internal 1logical
variable HORP (Hybrid OR Pulse) is set to .TRUE. if IFGHSH is called
and to .FALSE. if IFGHP is called. Y is the point at which the
current (IH-Ipo) 1is to be evaluated. A, B, KZ, and EIKZ are the
same as described in the write-up for AIHMPO and are arrays of
length NNSIZE. H 1is the subsection half-width for (IE-IPO).
Outputs GSUME, GSUMS, HSUME, and HSUMS are the wvalues of the
numerical integrations. Prefixes of "G" and "H" are used to specify
results associated with the A and B vectors, respectively. Suffixes
of "E" and "S" are used to specify that the results need to be
multiplied by exp(iY) and sin(Y), respectively. Either 1IFGHSH or
IFGHP is used by AIHMPO.

SUBROUTINE IFGHSH( Y, A, B, K%z, EIKZ, NNSIZE, H, GSUME, GSUMS,
1 HSUME, HSUMS )
INTEGER NNSIZE

COMPLEX*16 A (NNSIZE), B(NNSIZE), EIKZ(NNSIZE),GSUME, GSUMS,
1 HSUME, HSUMS, FRESNL, DCMPLX, TMP, ZRO/(6.D0,0.D0)/, SAEKZ,
2 SBEKZ, FDIF
REAL*8 Y, YY, H, HH, KZ(NNSIZE), TEMP(2), SH, DSIN, DCOS, DABS,
1 SNKZ, CSKzZ, SP, SM, ARG, PT, TWO/2.D@/

INTEGER I, J, K, NYSM1l, NYS, NYSP1l, IDINT, NSIZE

LOGICAL HORP

EQUIVALENCE( TMP, TEMP)

Initialize HORP{.TRUE. for hybrid, .FALSE. for pulse).

HORP = .TRUE.
GO TO 1
ENTRY IFGHP( Y, A, B, KZ, EIKZ, NNSIZE, H, GSUME, GSUMS, HSUME,
1 HSUMS )
HORP = .FALSE.
1 NSIZE = NNSIZE
YY = DABS(Y)
HH = H
SH = DSIN (HH)

NYSM1 = IDINT( (YY/HH+1.D@)/TWO )
NYS = NYSM1 + 1
NYSP1 = NYSM1+2

See if Y is or is not within the first subsection and respond
accordingly.

IF (HORP) GO TO 3

IF (NYS.EQ.1) GO TO 2
PT = DSIN(HH/TWO)

PT = PT*PT

GSUME = A(1)*PT
HSUME B(1l)*SH/TWO
GO TO 5
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2 PT DSIN(YY/TWO)
PT PT*PT
GSUME=A (1) *PT
HSUME=B (1) *DSIN (YY) /TWO
ARG= (HH-YY) /TWO
SM = DSIN(ARG)
ARG (HH+YY) /TWO
TMP DCMPLX ( DCOS(ARG) , DSIN(ARG) )
GSUMS = A(l)*SM*TMP
HSUMS = B(1l) *SM*TMP
GO TO 8

3 IF( NYS .EQ. 1 ) GO TO 4
TMP = FRESNL( HH )

GSUME = A(l)*TEMP(2)
HSUME = B(1l)*TEMP(1)
GO TO 5

4 TMP = FRESNL (YY)
GSUME = A(1) *TEMP(2)
HSUME = B(1l)*TEMP(1) \
FDIF = FRESNL (HH)
FDIF = FDIF - TMP
GSUMS = A(1) *FDIF
HSUMS = B(1l) *FDIF
GO TO 8

5 IF( NYSM1l .LT. 2 ) GO TO 7
SAEKZ = ZRO
SBEKZ = ZRO
DO 6 I=2, NYSMI1
J = NYSM1-I+2
TMP = EIKZ(J)

SNKZ = TEMP(2)
CSKZ = TEMP(1l)
SAEKZ = SAEKZ + A(J) *SNKZ

6 SBEKZ = SBEKZ + B(J) *CSKZ
GSUME = GSUME + SH*SAEKZ
HSUME = HSUME + SH*SBEKZ

C Treat subsection NYS.
7 ARG = (YY + KZ(NYS) - HH)/TWO

SNKZ = DSIN(ARG)

CSKZ = DCOS( ARG )

SM = DSIN( (YY-KZ(NYS)+HH)/TWO)
GSUME = GSUME + A (NYS)* (SM*SNKZ)
HSUME = HSUME + B(NYS) * (SM*CSKZ)
ARG = (YY+KZ(NYS)+HH)/TWO

TMP= DCMPLX( DCOS (ARG), DSIN(ARG) )
SM = DSIN( (KZ(NYS)+HH-YY)/TWO )
GSUMS A (NYS) *SM*TMP

HSUMS B (NYS) *SM*TMP
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C Integrate from subsection (NYS+1l) through NSIZE.
8 IF( NSIZE .LT. NYSP1 ) GO TO 10
SAEKZ = ZRO
SBEKZ = ZRO
DO 9 I= NYSPl, NSIZE

J= NSIZE - I + NYSP1

SAEKZ = SAEKZ + A(J)*EIKZ(J)
9 SBEKZ = SBEKZ + B(J)*EIKZ(J)
GSUMS = GSUMS + SH*SAEKZ
HSUMS = HSUMS + SH*SBEKZ
19 TMP = HSUMS
HSUMS = DCMPLX( ~TEMP(2), TEMP(1l) )
c Multiply all sums by a common factor of -2,
Cmrmme e e e e e e
HSUMS = -TWO*HSUMS
GSUMS = -TWO*GSUMS \
HSUME = -TWO*HSUME
GSUME = -TWO*GSUME
RETURN
END
C Function ITIMES takes "i" times the argument S. ITIMES is
C called by AIHMPO, IFGHSH, and IFGHP.
Crmmr e e e e ——————————

COMPLEX FUNCTION ITIMES*16 (S)
COMPLEX*16 S, SS, DCMPLX

REAL*8 SS2(2)

EQUIVALENCE( SS, SS2 )

SS = 8§

ITIMES = DCMPLX( -8S52(2), SS2(1) )
RETURN

END
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C Subroutine XIHMPO calculates the current (IH-Ipo) at the NPTS
C points stored in array KZ by the analytic or "exact" formula. The
C output is returned in array IHMPOX. KXZ and IHMPOX are arrays of
C length NPTS. THETAD is the angle of incidence in degrees. XIHMPO
C calls FRESNL and is called by MAIN.

C _______________________________________________________________________

SUBROUTINE XIHMPO( NPTS, KZ, THETAD, IHMPOX)

INTEGER NPTS

COMPLEX*16 DCMPLX, IHMPOX(NPTS), FRESNL, EIKZC

REAL*8 KZ(NPTS), Y, THETAD, THETA, DCOS, DSIN, CTA, CTA2SQ,
1 PI, PIO4, SQRTPI, YC, YCP4

DATA PI/3.14159265358979323846D0/,

1 SQRTPI/1.772453850908551602730DQ/,

2 PIO4/0.78539816339744830962D0/

INTEGER I

THETA = ( THETAD/180.D@)*PI

CTA = DCOS( THETA)

CTA2SQ = DCOS(THETA/2.D@ )

IF( THETAD .EQ. 180.D@ ) CTA2SQ = .0.D@

CTA2SQ = CTA2SQ*CTA2SQ

DO 1 I=1, NPTS

Y= KZ(I)

YC = Y*CTA

YCP4 = YC + PIO4

EIKZC = DCMPLX( DCOS(YCP4), -DSIN(YCP4) )
1 IHMPOX(I) = (4.D@/SQRTPI)* (EIKZC*FRESNL(2.D@*Y*CTA2SQ) )
1 -2 .D@*DCMPLX (DCOS (YC) ,-DSIN(YC) )

RETURN

END
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Page 10

C Subroutine PNTOUT writes results in disk file 25 and also
C prints out the "exact"” and the approximate real part, imaginary
C part, magnitude and phase of (IH-Ipo). THETAD is the angle of
C incidence in degrees. Y, IHMPOA, and IHMPOX are arrays of length
C NPTS. IHMPOA and IHMPOX have been filled by subprograms AIHMPO and
c XIHMPO, respectively, with wvalues of approximate and "exact"
C (IH-Ipo) evaluated at the points contained in Y. HYORPS 1is .TRUE.
c when the numbers corresponding to the hybrid expansion are being
C passed.

C _______________________________________________________________________
SUBROUTINE PNTOUT( THETAD, NPTS, Y, IHMPOA, IHMPOX, HYORPS )
INTEGER NPTS
COMPLEX*16 IHMPOA (NPTS), IHMPOX(NPTS), EXACT, ANS
REAL*8 SA(4), SX(4), ZM(3, 4), Y(NPTS), THETAD
INTEGER J, K, IC(4)/  RE=",  IM=", 'MAG=", AGL="/, I
LOGICAL HYORPS
PRINT 1, THETAD

1 FORMAT( 1", "THETAD=",F9.4//T5, ‘K2 ,T19, "EXACT ,T38, 'ANS’,T56,
1 ‘DIFF’, T76, 'EXACT , T97, ANS’, T1l4, 'DIFF’ )

C _______________________________________________________________________

C Write results on disk.

Cmmmrr e e e e e e e e e o
WRITE (25) THETAD, IHMPOA
IF(HYORPS) WRITE (25) IHMPOX

C _______________________________________________________________________

C Print results.

C _______________________________________________________________________

DO 3 K=1, NPTS

EXACT = IHMPOX(K)

ANS = IHMPOA (K)

CALL SEP( EXACT, SX )
CALL SEP( ANS, SA )

DO 2 J=1,4
ZM(1,J) = SX(J)
ZM(2,J) = SA(J)
2 Z2M(3,J) = SX(J) - SA(J)

3 PRINT 4, Y(K), ( IC(I), (2ZM(J,I),J=1,3), I=1,4)
4 FORMAT(  °, T2, 9PF8.5,T10,2(A4, <’ ,1PD17.18,°/°,D17.10,

>7,D17.10

1, 2x)/T10,A4, <’ ,D17.19,° /" ,D17.18, > ,D17.10,2X,A4, < ,0PF17.10,

2 /7, F17.10,°>",F17.10 )
RETURN
END
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